• Title/Summary/Keyword: Neutron collimator

Search Result 21, Processing Time 0.024 seconds

Determining PGAA collimator plug design using Monte Carlo simulation

  • Jalil, A.;Chetaine, A.;Amsil, H.;Embarch, K.;Benchrif, A.;Laraki, K.;Marah, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.3
    • /
    • pp.942-948
    • /
    • 2021
  • The aim of this work is to help inform the decision for choosing a convenient material for the PGAA (Prompt Gamma Activation Analysis) collimator plug to be installed at the tangential channel of the Moroccan Triga Mark II Research Reactor. Two families of materials are usually used for collimator construction: a mixture of high-density polyethylene (HDPE) with boron, which is commonly used to moderate and absorb neutrons, and heavy materials, either for gamma absorption or for fast neutron absorption. An investigation of two different collimator designs was performed using N-Particle Monte Carlo MCNP6.2 code with the ENDF/B-VII.1 and MCLIP84 libraries. For each design, carbon steel and lead materials were used separately as collimator heavy materials. The performed study focused on both the impact on neutron beam quality and the neutron-gamma background at the exit of the collimator beam tube. An analysis and assessment of the principal findings is presented in this paper, as well as recommendations.

Optimization of target, moderator, and collimator in the accelerator-based boron neutron capture therapy system: A Monte Carlo study

  • Cheon, Bo-Wi;Yoo, Dohyeon;Park, Hyojun;Lee, Hyun Cheol;Shin, Wook-Geun;Choi, Hyun Joon;Hong, Bong Hwan;Chung, Heejun;Min, Chul Hee
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1970-1978
    • /
    • 2021
  • The aim of this study was to optimize the target, moderator, and collimator (TMC) in a neutron beam generator for the accelerator-based BNCT (A-BNCT) system. The optimization employed the Monte Carlo Neutron and Photon (MCNP) simulation. The optimal geometry for the target was decided as the one with the highest neutron flux among nominates, which were called as angled, rib, and tube in this study. The moderator was optimized in terms of consisting material to produce appropriate neutron energy distribution for the treatment. The optimization of the collimator, which wrapped around the target, was carried out by deciding the material to effectively prevent the leakage radiations. As results, characteristic of the neutron beam from the optimized TMC was compared to the recommendation by the International Atomic Energy Agent (IAEA). The tube type target showed the highest neutron flux among nominates. The optimal material for the moderator and collimator were combination of Fluental (Al203+AlF3) with 60Ni filter and lead, respectively. The optimized TMC satisfied the IAEA recommendations such as the minimum production rate of epithermal neutrons from thermal neutrons: that was 2.5 times higher. The results can be used as source terms for shielding designs of treatment rooms.

Sensing changes in tumor during boron neutron capture therapy using PET with a collimator: Simulation study

  • Yang, Hye Jeong;Yoon, Do-Kun;Suh, Tae Suk
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2072-2077
    • /
    • 2020
  • The purpose of this study was to demonstrate the feasibility of sensing changes in a tumor during boron neutron capture therapy (BNCT) using a Monte Carlo simulation tool. In the simulation, an epi-thermal neutron source and a water phantom including boron uptake regions (BURs) were simulated. Moreover, this simulation also included a detector for positron emission tomography (PET) scanning and an adaptively-designed collimator (ADC) for PET. After the PET scanning of the water phantom, including the 511 keV source in the BUR, the ADC was positioned in the PET's gantry. Single prompt gamma rays were collected through the ADC during neutron irradiation. Then, single prompt gamma ray-based tomography images of different sized tumors were acquired by a four-step process. Both the signal-to-noise ratio (SNR) and tumor size were analyzed from each step image. From this analysis, we identified a decreasing trend of both the SNR and signal intensity as the tumor size decreased, which was confirmed in all images. In conclusion, we confirmed the feasibility of sensing changes in a tumor during BNCT using PET and an ADC through Monte Carlo simulation.

Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: Comparison of SrI2 and GAGG using Monte-Carlo simulation

  • Kim, Minho;Hong, Bong Hwan;Cho, Ilsung;Park, Chawon;Min, Sun-Hong;Hwang, Won Taek;Lee, Wonho;Kim, Kyeong Min
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.626-636
    • /
    • 2021
  • Boron-neutron capture therapy (BNCT) is a cancer treatment method that exploits the high neutron reactivity of boron. Monitoring the prompt gamma rays (PGs) produced during neutron irradiation is essential for ensuring the accuracy and safety of BNCT. We investigate the imaging of PGs produced by the boron-neutron capture reaction through Monte Carlo simulations of a gamma camera with a SrI2 scintillator and parallel-hole collimator. GAGG scintillator is also used for a comparison. The simulations allow the shapes of the energy spectra, which exhibit a peak at 478 keV, to be determined along with the PG images from a boron-water phantom. It is found that increasing the size of the water phantom results in a greater number of image counts and lower contrast. Additionally, a higher septal penetration ratio results in poorer image quality, and a SrI2 scintillator results in higher image contrast. Thus, we can simulate the BNCT process and obtain an energy spectrum with a reasonable shape, as well as suitable PG images. Both GAGG and SrI2 crystals are suitable for PG imaging during BNCT. However, for higher imaging quality, SrI2 and a collimator with a lower septal penetration ratio should be utilized.

The Characteristics for BNCT facility in Hanaro Reactor

  • Soheigh Suh;Lee, Dong-Han;Ji, Young-Hoon;Lee, Dong-Hoon;Yoo, Seong-Yul;Rhee, Chang-Hun;Rhee, Soo-Yong;Jun, Byung-Jin
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.161-163
    • /
    • 2002
  • The BNCT(Boron Neutron Capture Therapy) facility has been developed in Hanaro(High-flux Advanced Neutron Application Reactor), a research reactor of Korea Atomic Energy Research Institute. A typical tangenial beam port is utilized with this BNCT facility. Thermal neutrons can be penetrated within the limits of the possible maximum instead of being filtered fast neutrons and gamma rays as much as possible using the silicon and bismuth single crystals. In addition to, the liquid nitrogen (LN$_2$) is used to cool down the silicon and bismuth single crystals for the increase of the penetrated thermal neutron flux. Neutron beams for BNCT are shielded using the water shutter. The water shutter was designed and manufactured not to interfere with any other subsystem of Hanaro when the BNCT facility is operated. Also, it is replaced with conventional beam port plug in order to cut off helium gas leakage in the beam port. A circular collimator, composed of $\^$6/Li$_2$CO$_3$ and polyethylene compounds, is installed at the irradiation position. The measured neutron flux with 24 MW reactor power using the Au-198 activation analysis method is 8.3${\times}$10$\^$8/ n/cm$^2$ s at the collimator, exit point of neutron beams. Flatness of neutron beams is proven to ${\pm}$ 6.8% at 97 mm collimator. According to the result of acceptance tests of the water shutter, the filling time of water is about 190 seconds and drainage time of it is about 270 seconds. The radiation leakages in the irradiation room are analyzed to near the background level for neutron and 12 mSv/hr in the maximum for gamma by using BF$_3$ proportional counter and GM counter respectively. Therefore, it is verified that the neutron beams from BNCT facility in Hanaro will be enough to utilize for the purpose of clinical and pre-clinical experiment.

  • PDF

Measurements of In-phantom Neutron Flux Distribution at the HANARO BNCT Facility

  • Kim Myong Seop;Park Sang Jun;Jun Byung Jin
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.203-209
    • /
    • 2004
  • In-phantom neutron flux distribution is measured at the HANARO BNCT irradiation facility. The measurements are performed with Au foil and wires. The thermal neutron flux and Cd ratio obtained at the HANARO BNCT facility are $1.19{\times}10^9\;n/cm^{2}s$ and 152, respectively, at 24 MW reactor power. The measured in-phantom neutron flux has a maximum value at a depth of 3 mm in the phantom and then decreases rapidly. The maximum flux is about $25\%$ larger than that of the phantom surface, and the measured value at a depth of 22 mm in the phantom is about a half of the maximum value. In addition, the neutron beam is limited well within the aperture of the neutron collimator. The two-dimensional in-phantom neutron flux distribution is determined. Significant neutron irradiation is observed within 20 mm from the phantom surface. The measured neutron flux distribution can be utilized in irradiation planning for a patient.

A feasibility study of the Iranian Sun mather type plasma focus source for neutron capture therapy using MCNP X2.6, Geant4 and FLUKA codes

  • Nanbedeh, M.;Sadat-Kiai, S.M.;Aghamohamadi, A.;Hassanzadeh, M.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.1002-1007
    • /
    • 2020
  • The purpose of the current study was to evaluate a spectrum formulation set employed to modify the neutron spectrum of D-D fusion neutrons in a IS plasma focus device using GEANT4, MCNPX2.6, and FLUKA codes. The set consists of a moderator, reflector, collimator and filters of fast neutron and gamma radiation, which placed on the path of 2.45 MeV neutron energy. The treated neutrons eliminate cancerous tissue with minimal damage to other healthy tissue in a method called neutron therapy. The system optimized for a total neutron yield of 109 (n/s). The numerical results indicate that the GEANT4 code for the cubic geometry in the Beam Shaping Assembly 3 (BSA3) is the best choice for the energy of epithermal neutrons.

Montecarlo Simulation of the thermal neutron reflectometer with horizontal sample geometry for surface characterization of nanostructured thin films (나노 박막의 표면분석을 위한 열중성자 기반 수평형 반사율 장치의 몬테카를로 시뮬레이션)

  • Lee Chong Oh;Shin Kwanwoo;Lee Jeong Soo;Cho Sang Jin;Lee Chang Hee;So Ji Yong
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.119-125
    • /
    • 2005
  • The horizontal reflectometer, which uses a neutron beam in the reactor, provides scientists a set of unique tools offering destruction-free investigation of biological membranes in the native-like environments in nano-meter scale. As an intial stage for the development of the first Korean neutron reflectometer with a horizontal sample geometry, we performed the instrumental simulation using MCSTAS, Monte Carlo Simulations of Triple Axis Spectrometers for neutron ray-tracing simulation. The results indicated that modeling of the overall instrument geometry based on the thermal neutron source with a wavelength of 2.55 $2.5{\AA}$ at HANARO was successfully performed, and further the optimization of the individual components of the instrument, including the collimator, monochromators, filter and supermirror has been made.

Commissioning of neutron triple-axis spectrometers at HANARO

  • Hiraka, Haruhiro;Lee, Jisung;Jeon, Byoungil;Seong, Baek-Seok;Cho, Sangjin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.2138-2150
    • /
    • 2020
  • We report the status of the cold neutron triple-axis spectrometer (Cold TAS) and thermal neutron triple-axis spectrometer (Thermal TAS) installed at HANARO. Cold TAS, whose specifications are standard across the world, is in the final phase of commissioning. Proper instrument operation was confirmed through a feasibility study of phonon measurements and data analyses with resolution convolution. In contrast, Thermal TAS is in the initial phase of commissioning, and improvement of the monochromator drum is now in progress from the viewpoint of radiation shielding. In addition, we report recent activities in the development of neutron basic elements, that is, film-coated Si-wafer collimators, which are promising for use in triple-axis spectroscopy, particularly in Cold TAS.

Design and Fabrication of CLYC-Based Rotational Modulation Collimator (RMC) System for Gamma-Ray/Neutron Dual-Particle Imager

  • Kim, Hyun Suk;Lee, Jooyub;Choi, Sanghun;Bang, Young-bong;Ye, Sung-Joon;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.3
    • /
    • pp.112-119
    • /
    • 2021
  • Background: This work aims to develop a new imaging system based on a pulse shape discrimination-capable Cs2LiYCl6:Ce (CLYC) scintillation detector combined with the rotational modulation collimator (RMC) technique for dual-particle imaging. Materials and Methods: In this study, a CLYC-based RMC system was designed based on Monte Carlo simulations, and a prototype was fabricated. Therein, a rotation control system was developed to rotate the RMC unit precisely, and a graphical user interface-based software was also developed to operate the data acquisition with RMC rotation. The RMC system was developed to allow combining various types of collimator masks and detectors interchangeably, making the imaging system more versatile for various applications and conditions. Results and Discussion: Operational performance of the fabricated system was studied by checking the accuracy and precision of the collimator rotation and obtaining modulation patterns from a gamma-ray source repeatedly. Conclusion: The prototype RMC system showed reliability in its mechanical properties and reproducibility in the acquisition of modulation patterns, and it will be further investigated for its dual-particle imaging capability with various complex radioactive source conditions.