• 제목/요약/키워드: Neutron capture cross section

검색결과 31건 처리시간 0.025초

Measurement of Energy Dependent Neutron Capture Cross Sections of $^{197}Au$ in Energy Region from 0.1 eV to 10 keV using a Lead Slowing-down Spectrometer

  • Yoon, Jung-Ran
    • 한국방사선학회논문지
    • /
    • 제4권4호
    • /
    • pp.29-32
    • /
    • 2010
  • 본 연구는 교토대학 원자로실험소의 46-MeV전자선형가속기에서 발생된 전자선을 Ta표적에 충돌시켜 발생된 중성자를 이용하였다. 발생된 중성자는 납감속측정장치(LSDS:Lead Slowing-down Spectrometer))속에서 감속되었고 중성자비행시간법(TOF:Time-of-Flight)을 이용하여서 중성자에너지를 선별하여 $^{197}Au$의 중성자포획단면적을 중성자에너지 0.1 eV에서 10 keV범위에 걸쳐 측정하였다. 발생된 중성자속을 측정하기 위하여 $BF_3$검출기속의 $^{10}B(n,{\gamma})$반응을 이용하였고 이것을 이용하여 중성자 반응 단면적을 상대적으로 얻었다. TOF방법으로 얻어진 결과는 1 eV에서의 결과(24.5 b)에 규격화되었다. 기존의 실험결과들과 평가결과들인 JENDL/D-99 Dosimetry File과 비교하였다.

1 eV 이하 에너지 영역에서의 180Ta 동위원소의 중성자공명에 대한 연구 (A Study on Neutron Resonance Energy of 180Ta below 1eV Energy)

  • 이삼열
    • 한국방사선학회논문지
    • /
    • 제8권6호
    • /
    • pp.287-292
    • /
    • 2014
  • 본 연구는 자연 속에 미량(존재비: 0.012 %)으로 존재하는 $^{180}Ta$의 중성자포획 공명에 대하여 포획단면적의 계산치와 측정치를 비교하여 분석하였다. 일반적으로 중성자 공명은 Breit-Wigner식으로 정의되며, 식에는 공명에너지를 중심으로 공명의 폭을 결정하는 다양한 인자들로 구성되어 있다. 그러나 $^{180}Ta$의 경우 중성자포획단면적과 공명에 대한 정보가 잘 알려져 있지 않고 실험적으로도 측정되어진 예가 현재까지는 없는 것이 현실이다. 따라서 본 실험에서는 천연 Ta속에 포함되어진 $^{180}Ta$에 의한 중성자 포획에 의해 발생되는 감마선을 관측하여 $^{180}Ta$의 공명을 분석하고 Mughabghab에 의해서 계산되어진 공명인자를 사용하여 1 eV이하의 에너지에 대한 중성자포획단면적을 계산하고 비교분석하였다. 측정을 위해서 교토대학원자로 실험소의 46-MeV 전자선형가속기를 이용하여 중성자 TOF 방법으로, 에너지 영역 0.003 eV에서 10 eV에 걸쳐 측정하였다. 측정을 위해서는 12개의 $Bi_4Ge_3O_{12}(BGO)$섬광체로 구성된 전에너지 흡수검출장치로 $^{180}Ta(n,{\gamma})^{181}Ta$ 반응으로부터 나오는 즉발감마선을 측정하였다.

Calculation of Energy Dependent Neutron Correction Coefficient Ratios of Natural Rhodium in Energy Region from 0.003 to 100 eV

  • Lee, Sam-Yol
    • 한국방사선학회논문지
    • /
    • 제2권3호
    • /
    • pp.33-35
    • /
    • 2008
  • In the neutron capture experiment and calculation, the neutron absorption and scattering are very important. Especially these effects are conspicuous in the resonance energy region and below the thermal energy region. In the present study, we obtained energy dependent neutron absorption ratios of natural rhodium in energy region from 0.003 to 100 eV by MCNP-4B Code. The coefficients for neutron absorption was calculated for several types of thickness. In the lower energy region, neutron absorption is larger than higher region, because of large capture cross section (1/v). Furthermore it seems very different neutron absorption in the large resonance energy region. These results are very useful to decide the thickness of sample and shielding materials.

  • PDF

Resonance Integral of Neptunium(237Np) from Energy Dependent Differential Neutron Capture Cross-Section by Using the Linac TOF Method and C6D6 Scintillation Spectrometer

  • Lee, Sam-Yol
    • 한국방사선학회논문지
    • /
    • 제5권4호
    • /
    • pp.217-221
    • /
    • 2011
  • $^{237}Np$ is very important material in the fission products of nuclear reactors. Resonance integral(RI) tests of this material is necessary to check between the experiments and the evaluated data. Such feedback to the evaluated data is very important to correct data and improve of codes. The RI for the $^{237}Np(n,{\gamma})^{238}Np$ reaction were measured by using the 46-MeV electron linear accelerator (linac) at the Research Reactor Institute, Kyoto University (KURRI). The measurement was performed in the energy region from 0.005 eV and 10 keV. RI obtained as 804.7 barns, compared with those of the evaluated data in JENDL-4.0 and Mughabghab.

The multigroup library processing method for coupled neutron and photon heating calculation of fast reactor

  • Teng Zhang;Xubo Ma;Kui Hu;GuanQun Jia
    • Nuclear Engineering and Technology
    • /
    • 제56권4호
    • /
    • pp.1204-1212
    • /
    • 2024
  • To accurately calculate the heating distribution of the fast reactor, a neutron-photon library in MATXS format named Knight-B7.1-1968n × 94γ was processed based on the ENDF/B-VII.1 library for ultrafine groups. The neutron cross-section processing code MGGC2.0 was used to generate few-group neutron cross sections in ISOTXS format. Additionally, the self-developed photon cross-section processing code NGAMMA was utilized to generate photon libraries for neutron-photon coupled heating calculations, including photo-atom cross sections for the ISOTXS format, prompt photon production cross sections, and kinetic energy release in materials (KERMA) factors for neutrons and photons, and the self-shielding effect from the capture and fission cross sections of neutron to photon have been taken into account when the photon source generated by neutron is calculated. The interface code GSORCAL was developed to generate the photon source distribution and interface with the DIF3D code to calculate the neutron-photon coupling heating distribution of the fast reactor core. The neutron-photon coupled heating calculation route was verified using the ZPPR-9 benchmark and the RBEC-M benchmark, and the results of the coupled heating calculations were analyzed in comparison with those obtained from the Monte Carlo code MCNP. The calculations show that the library was accurately processed, and the results of the fast reactor neutron-photon coupled heating calculations agree well with those obtained from MCNP.

MRI-Guided Gadolinium Neutron Capture Therapy

  • Ji-Ae Park;Jung Young Kim;Hee-Kyung Kim
    • 대한방사성의약품학회지
    • /
    • 제8권2호
    • /
    • pp.113-118
    • /
    • 2022
  • Gadolinium neutron capture therapy (Gd-NCT) is a precision radiation therapy that kills cancer cells using the neutron capture reaction that occurs when 157Gd hits thermal neutrons. 157Gd has the highest thermal neutron capture cross section of 254,000 barns among stable isotopes in the periodic table. Another stable isotope, 155Gd, also has a high thermal neutron trapping area (~ 60,700 barns), so gadolinium that exists in nature can be used as a Gd-NCT drug. Gd-NCT is a mixed kinetic energy of low-energy and high-energy ionizing particles, which can be uniformly distributed throughout the tumor tissue, thereby solving the disadvantage of heterogeneous dose distribution in tumor tissue. The Gd complexes of small-sized molecule are widely used as contrast agents for magnetic resonance imaging (MRI) in clinical practice. Therefore, these compounds can be used not only for diagnosis but also therapy when considering the concept of Gd-NCT. This multifunctional trial can look forward to new medical advance into NCT clinical practices. In this review, we introduce gadolinium compounds suitable for Gd-NCT and describe the necessity of image guided Gd-NCT.