Browse > Article
http://dx.doi.org/10.22643/JRMP.2022.8.2.113

MRI-Guided Gadolinium Neutron Capture Therapy  

Ji-Ae Park (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS))
Jung Young Kim (Division of Applied RI, Korea Institute of Radiological & Medical Sciences (KIRAMS))
Hee-Kyung Kim (Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation)
Publication Information
Journal of Radiopharmaceuticals and Molecular Probes / v.8, no.2, 2022 , pp. 113-118 More about this Journal
Abstract
Gadolinium neutron capture therapy (Gd-NCT) is a precision radiation therapy that kills cancer cells using the neutron capture reaction that occurs when 157Gd hits thermal neutrons. 157Gd has the highest thermal neutron capture cross section of 254,000 barns among stable isotopes in the periodic table. Another stable isotope, 155Gd, also has a high thermal neutron trapping area (~ 60,700 barns), so gadolinium that exists in nature can be used as a Gd-NCT drug. Gd-NCT is a mixed kinetic energy of low-energy and high-energy ionizing particles, which can be uniformly distributed throughout the tumor tissue, thereby solving the disadvantage of heterogeneous dose distribution in tumor tissue. The Gd complexes of small-sized molecule are widely used as contrast agents for magnetic resonance imaging (MRI) in clinical practice. Therefore, these compounds can be used not only for diagnosis but also therapy when considering the concept of Gd-NCT. This multifunctional trial can look forward to new medical advance into NCT clinical practices. In this review, we introduce gadolinium compounds suitable for Gd-NCT and describe the necessity of image guided Gd-NCT.
Keywords
Gd-NCT; Gadolinium compounds; Tumor-targeting; Image guided Gd-NCT;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, Wilson JG. The chemistry of neutron capture therapy.Chem Rev 1998;98:1515-62.   DOI
2 Larsson B., Crawford J., Weinreich R. Advances in Neutron Capture Therapy. The Netherlands: Elsevier Science;1997, p. 26-35.
3 Leinweber G, Barry DP, Trbovich MJ, Burke JA, Drindak NJ, Knox HD, Ballad RV, Block R C, Danon Y, Severnyak LI. Neutron capture and total cross-section measurements and resonance parameters of gadolinium. Nucl Sci Eng 2006;154:261-79.   DOI
4 Tokuuye K, Tokita N, Akine Y, Nakayama H, Sakurai Y, Kobayashi T, Kanda K. Comparion of radiation effects of gadolinium and boron neutron capture reactions. Strahlenther Onkol 2000;176:81-3.   DOI
5 Brugger RM, Shih JA, Evaluation of gadolinium-157 as a neutron capture therapy agent. Strahlenther Onkol 1989;165:153-6.
6 Cerullo N, Bufalino D, Daquino G. Progress in the use of gadolinium for NCT. Appl Radiat Isot 2009;67:S157-60.   DOI
7 Martin RF, Cunha GD, Pardee M, Allen BJ. Induction of DNA Double-Strand Breaks by 157 Gd Neutron Capture. Pigment Celll Res1989;2(4):330-2.   DOI
8 Stepanek, J. Emission spectra of gadolinium-158. Med Phys 2003;30:41-3.   DOI
9 Tanaka T, Hagiwara K, Gazzola E, Ali A, Ou I, Sudo T, Das PK, Reen MS, Dhir R, Koshio Y. Gamma-ray spectra from thermal neutron capture on gadolinium-155 and natural gadolinium. Prog Theor Exp Phys 2020;2020:043D02.
10 Yokoya A, Ito T. Photon-induced Auger effect in biological systems: a review. Int J Radiat Biol 2017;93:743-6.   DOI
11 De Stasio G, Rajesh D, Casalbore P, Daniels MJ, Erhardt RJ, Frazer BH, Wiese LM, Richter KL, Sonderegger BR, Gilbert B. Are gadolinium contrast agents suitable for gadolinium neutron capture therapy. Neurol Res 2005;27:387-98.   DOI
12 Dewi N, Mi P, Yanagie H, Sakurai Y, Morishita Y, Yanagawa M, Nakagawa T, Shinohara A, Matsukawa T, Yokoyama K. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J Cancer Res Clin Oncol 2016;142:767-75.   DOI
13 Le M, Cui UZ. Biodistribution and tumor-accumulation of gadolinium (Gd) encapsulated in long-circulating liposomes in tumor-bearing mice for potential neutron capture therapy. Int J Pharm 2006;320:96-103.   DOI
14 Shih J, Brugger R. Gadolinium as a Neutron Capture Therapy Agent. Med Phys 1992;19(3): 733-44.   DOI
15 Hofmann B, Fischer CO, Lawaczeck R, Platzek J, Semmler, W. Gadolinium neutron capture therapy (GdNCT) of melanoma cells and solid tumors with the magnetic resonance imaging contrast agent Gadobutrol. Invest Radiol 1999;34:126-33.   DOI
16 Takagaki M, Hosmane NS. Gadolinium neutron capture therapy for malignant brain tumors. Aino J 2007;6:39-44.
17 Yoshida F, Yamamoto T, Nakai K, Zaboronok A, Matsumura A. Additive effect of BPA and Gd-DTPA for application in accelerator-based neutron source. Appl Radiat Isot 2015;106: 247-50.   DOI
18 Zhang T, Matsumura A, Yamamoto T, Yoshida F, Nose T, Shimojo N. Comparison of gadobenate dimeglumine and gadopentetate dimeglumine: a study of MR imaging and inductively coupled plasma atomic emission spectroscopy in rat brain tumors. AJNR Am J Neuroradiol.2002;23(1):15-8.
19 Tokumitsu H, Ichikawa H, Fukumori Y. Chitosan-gadopenteic acid complex nanopartciles for gadolinium neutron-capture therapy of cancer: Preparation by novel emulsion-droplet coalescence technique and characterization.Pharm Res 1999;16:1830-5.   DOI
20 Geninatti-Crich S, Alberti D, Szabo I, Deagostino A, Toppino A, Barge A, Ballarini F, Bortolussi S, Bruschi P, Protti N. MRI-guided neutron capture therapy by use of a dual gadolinium/boron agent targeted at tumour cells through upregulated low-density lipoprotein transporter. Chem Eur J 2011;17:8479-86.   DOI
21 Qin C, Hou X, Khan T, Nitta N, Yanagawa M, Sakurai Y, Suzuki M, Masunaga SI, Tanaka H, Sakurai Y. Enhanced MRI-guided gadolinium (III) neutron capture therapy by polymeric nanocarriers promoting tumor accumulation and intracellular delivery.Chem Nano Mater 2020;6(3):412-9.
22 Mi P, Dewi N, Yanagie H, Kokuryo D, Suzuki M, Sakurai Y, Li Y, Aoki I, Ono K, Takahashi H, Cabral H. Hybrid calcium phosphate-polymeric micelles incorporating gadolinium chelates for imaging-guided gadolinium neutron capture tumor therapy. ACS Nano 2015;9: 5913-21.   DOI
23 Nam KS, Jung KH, Chang Y, Kim TJ. Gadolinium Complex of 1,4,7,10-Tetraazacyclododecane-1,4,7-trisacetic acid (DO3A) Conjugate of [(p-aniline benzothiazole)methyl]pyridine as a Tumor-Targeting MRI Contrast Agent. Bull Korean Chem Soc 2013;34(12):3654-8.   DOI
24 Kim HK, Kang MK, Jung KH, Kang SH, Kim YH, Jung J, Lee GH, Chang Y, Kim TJ. Gadolinium complex of DO3A-benzothiazole aniline (BTA) conjugate as a theragnostic agent. J Med Chem 2013;56:8104-11.   DOI
25 Jung K, Park JA, Kim JY, Kim MH, Oh SJ, Kim HK, Choi EJ, Kim HJ, Do SH, Lee KC, Kim KM, Lee YJ. Image-guided neutron capture therapy using the Gd-DO3A-BTA complex as a new combinatorial treatment approach.Contrast Media Mol Imaging 2018;2018:1-9.
26 De Stasio G, Casalbore P, Pallini R, Gilbert B, Sanita F, Ciotti MT, Rosi G, Festinesi A, Larocca LM, Rinelli A, Perret D, Mogk DW, Perfetti P, Mehta MP, Mercanti D. Gadolinium in human glioblastoma cells for gadolinium neutron capture therapy.Cancer Res 2001;61: 4272-77.
27 Bridot JL, Dayde D, Riviere C, Mandon C, Billotey C, Lerondel S, Sabattier R, Cartron G, Pape AL. Hybrid gadolinium oxide nanoparticles combining imaging and therapy. J Mater Chem 2009;19:2328-35.   DOI
28 Franken NAP, Bergs JWJ, Kok TT, Kuperus RRN, Stecher-Rasmussen F, Haveman J, Van Bree C, Stalpers LJA. Gadolinium enhances the sensitivity of SW-1573 cells for thermal neutron irradiation.Oncol Rep 2006;15:715-20.