• Title/Summary/Keyword: Neutron Transport

Search Result 178, Processing Time 0.031 seconds

Focal Plane Damage Analysis by the Space Radiation Environment in Aura Satellite Orbit

  • Ko, Dai-Ho;Yeon, Jeoung-Heum;Kim, Seong-Hui;Yong, Sang-Soon;Lee, Seung-Hoon;Sim, Enu-Sup;Lee, Cheol-Woo;De Vries, Johan
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.28.1-28.1
    • /
    • 2011
  • Radiation-induced displacement damage which has caused the increase of the dark current in the focal plane adopted in the Ozone Monitoring Instrument (OMI) was studied in regards of the primary protons and the secondaries generated by the protons in the orbit. By using the Monte Carlo N-Particle Transport Code System (MCNPX) version 2.4.0 along with the Stopping and Range of Ions in Matter version 2010 (SRIM2010), effects of the primary protons as well as secondary particles including neutron, electron, and photon were investigated. After their doses and fluxes that reached onto the charge-coupled device (CCD) were examined, displacement damage induced by major sources was presented.

  • PDF

MC-50 의학용 싸이클로트론의 특성조사

  • Park, Ju-Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 1987
  • The general features and measured results of the 143cm, variable-energy, three sector-focused MC-50 cyclotron installed at Korea Cancer Center Hospital are described. The MC-50 cyclotron is designed to produce beams of protons, deuterons, He-3 and alpha particles of maximum energies 50MeV, 25MeV, 66MeV and 50MeV respectively to be used for neutron therapy and radioisotope production. The azimuthal field variation is produced by three sets of spiral ridges having a maximum spiral angle of $55^{\circ}$. The RF system, a two-dee quarter-wave system is designed to provide a continuously variable frequency from 15.5 to 26.8 MHz. The first external beam was obtained in January 1986. Subsequent internal ana external beam studies with protons and alphas show a well-behaved beam through the whole beam transport system.

  • PDF

Local structure and transport properties of $La_{0.7}Ca_{0.3-x}Ba_{x}MnO_3$ manganites

  • A.N.Ulyanov;Yang, Dong-Seok;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.62-63
    • /
    • 2003
  • Electron-phonon interaction plays a significant role in forming of colossal magnetoresistance effect (CMR). Polaron formation was observed by neutron diffraction and by extended X-ray absorption fine structure (EXAFS) analysis. Local probe as given by the EXAFS is a useful method to study the polaronic charge and its dependence on temperature and ions size. Here we present the EXAFS study of polaronic charge in $La_{0.7}Ca_{0.3-x}Ba_{x}MnO_3$ compositions.

  • PDF

AN IMPROVED MONTE CARLO METHOD APPLIED TO THE HEAT CONDUCTION ANALYSIS OF A PEBBLE WITH DISPERSED FUEL PARTICLES

  • Song, Jae-Hoon;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.279-286
    • /
    • 2009
  • Improving over a previous study [1], this paper provides a Monte Carlo method for the heat conduction analysis of problems with complicated geometry (such as a pebble with dispersed fuel particles). The method is based on the theoretical results of asymptotic analysis of neutron transport equation. The improved method uses an appropriate boundary layer correction (with extrapolation thickness) and a scaling factor, rendering the problem more diffusive and thus obtaining a heat conduction solution. Monte Carlo results are obtained for the randomly distributed fuel particles of a pebble, providing realistic temperature distributions (showing the kernel and graphite-matrix temperatures distinctly). The volumetric analytic solution commonly used in the literature is shown to predict lower temperatures than those of the Monte Carlo results provided in this paper.

Optimum Radial Build of a Low Aspect Ratio Tokamak Reactor

  • Hong, B.G.;Hwang, Y.S.;Kang, J.S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.397-397
    • /
    • 2011
  • In a low aspect ratio (LAR) tokamak reactor with a superconducting toroidal field (TF) coil, the radial build of TF coil and the shield play a key role in determining the size of a reactor. For self-consistent determination of the reactor components and physics parameters, a system analysis code is coupled with one-dimensional radiation transport code. Conceptual design study of a compact superconducting LAR tokamak reactor with aspect ratio less than 2.5 was conducted and the optimum radial build was identified. It is shown that the use of an improved shielding material and high temperature superconducting magnets with high critical current density opens up the possibility of a fusion power plant with compact size and small re-circulating power simultaneously at low aspect ratio, and that by using an inboard neutron reflector instead of breeding blanket, tritium self-sufficiency is possible with outboard blanket only and thus compact sized reactor is viable.

  • PDF

Collapse of Charge Ordering in Ru-doped Mono-layered Manganites

  • Hong, Chang-Seop;Kim, Wan-Seop;Hur, Nam-Hwi
    • Journal of Magnetics
    • /
    • v.8 no.2
    • /
    • pp.85-88
    • /
    • 2003
  • The magnetic and transport properties far single crystals of Ru-doped mono-layered manganites $La_{0.5}Sr_{1.5}-Mn_{1-x}Ru_xO_4$ (0$\leq$$\chi$$\leq$0.1) have been studied using neutron diffraction and magnetization measurements. Temperature dependent magnetization data reveal that with an increase in the Ru concentration the parent charge ordered antiferromagnetic state is gradually destroyed and new ferromagnetic phase evolves. In the low Ru-doped system spin glass behavior is apparent in low temperature region, which is confirmed by ac and do magnetization measurements. The competing magnetic interaction between Mn/Mn and Mn/Ru couples is the most likely cause of the spin glass transition.

Extensions of Streaming Rays Method for Streaming Dominant Neutron Transport Problems

  • Hong, Ser-Gi;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • v.28 no.3
    • /
    • pp.320-330
    • /
    • 1996
  • The streaming rays(SR) method is improved and extended to multigroup, anisotropic scattering, and three-dimensional angular space(x-y-z(infinite))problems. This method is applied to the shielding problems in which the ray effect occurs seriously. For verification, the results of MORSE-CG code are used as reference solution and the results of TWODANT code are compared. The results show that solutions of the SR method are much better than those of the TWODANT code and are in good agreement with those of the MORSE-CG code. Also, to reduce computing time, two acceleration algorithms are implemented in the SR method : the standard coarse-mesh rebalance and a new angular two-grid acceleration.

  • PDF

MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

  • Kelly, Daniel J. III;Kelly, Ann E.;Aviles, Brian N.;Godfrey, Andrew T.;Salko, Robert K.;Collins, Benjamin S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1326-1338
    • /
    • 2017
  • The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL) tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of $0.99994{\pm}6.8E-6$ (95% confidence interval). Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

Shielding Design of Electron Beam Accelerators Using Supercomputer (슈퍼컴을 이용한 전자빔가속기의 차폐설계)

  • Kang, Won Gu;Kim, In Soo;Kuk, Sung Han;Kim, Jin Kyu;Han, Bum Soo;Jeong, Kwang Young;Kang, Chang Mu
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.33-38
    • /
    • 2010
  • The MCNP5 neutron, electron, photon Monte Carlo transport program was installed on the KISTI's SUN Tachyon computer using the parallel programming. Electron beam accelerators were modeled and shielding calculations were performed in order to investigate the reduction of computation time in the supercomputer environment. It was observed that a speedup of 40 to 80 of computation time can be obtained using 64 CPUs compared to an IBM PC.

Finite Element Computation of Stab Criticality and Milne Problem

  • Kim, Chang-Hyo;Chang, Jong-Hwa;Kim, Dong-Hoon
    • Nuclear Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.209-217
    • /
    • 1976
  • A finite element method is formulated for one-speed integral equation it or the neutron transport in a slab reactor. The formulation incorporates both the linear and the cubic Hermite interpolating polynomials and is used to compute the approximate solutions for the slab criticality and Milne problem. The results are compared with the exact solutions available and then the effectiveness of the method is extensively discussed.

  • PDF