• 제목/요약/키워드: Neutralizing Antibody

Search Result 159, Processing Time 0.027 seconds

Studies on the production and characterization of monoclonal antibodies against bovine rotaviruses isolated in Korea (소 로타바이러스(국내분리주)에 대한 단크론항체 생산 및 특성에 관한 연구)

  • Ahn, Jae-moon;Cho, Sun-hee;Kang, Shien-young
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.2
    • /
    • pp.395-403
    • /
    • 1996
  • Monoclonal antibodies(MAbs) against field isolates of the bovine rotavirus A strain(G6), V strain(G10) and reference I-801 strain(G8) were produced and characterized. Six MAbs(4C2, 4D9, 5E1, 5E7, 5D5, 3E4) against A strain had neutralizing activity and reacted only with the G6 bovine rotaviruses determined by fluorescence focus neutralization (FFN) test. Otherwise, five neutralizing MAbs(1G2, 2G6, 5E2, 5E12, 5H7) against I-801 strain neutralized the G6 and G8 bovine rotaviruses. Five non-neutralizing MAbs(5F12, 7F12, 5E11, 2A11, 2B12) were VP6-specific and cross-reacted with all bovine and porcine rotaviruses examined by fluorescence antibody(FA) test. None of the MAbs reacted with bovie viral diarrhea virus(BVDV) and bovine coronavirus(BCV) determined by FA and FFN test.

  • PDF

Sequencing and Baculovirus-Based Expression of the Glycoprotein B2 Gene of HSV-2 (G)

  • Uh, Hong-Sun;Park, Jong-Kuk;Kang, Hyun;Kim, Soo-Young;Lee, Hyung-Hoan
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.482-490
    • /
    • 2001
  • The gene for glycoprotein B (gB2) of HSV-2-strain G was subcloned, sequenced, recombinated into the lacZ-HcNPV, expressed in insect cells, and compared with the homologous gene of other HSV-2 strains. The ORF of the gB2 gene was 2,715 bp. The overall nucleotide sequence homology of te gB2 gene compared ith that of the two previously reported HSV-2 strains appeared to be over 98%. A recombinant virus named Baculo-gB2 protein in insect cells. The recombination was confirmed by a PCR and the expression was demonstrated by radio immunoprecipitation. Insect cells infected with the Baculo-gB2 virus synthesized and processed gB2 with approximately 120 kDa in the cells, and then secreted it into the culture media, where it reacted with a nomoclonal antibody to gB2. The gB2 polypeptide contained two main hydrophobic regions (a signal sequence from 1 to 23 amino acid residues, and a membrane anchor sequence from aa 745 to 798), eight N-glycosylation sites evenly distributed, and was rich in alanine (11.2%). Antibodies to this recombinant protein that were raised in mice recognized the viral gB2 and neutralized the infectivity of the HSV-2 in vitro. There results show that the gB2 protein was successfully porduced in insect cells and could be used to raise a protective neutralizing antibody. Accordingly, this particular recombinant protein may be useful in the development of a subunit vaccine.

  • PDF

Different immunological features of two genetically distinct type 2 porcine reproductive and respiratory syndrome (PRRS) viruses

  • Shabir, Nadeem;Khatun, Amina;Kim, Won-Il
    • Korean Journal of Veterinary Service
    • /
    • v.37 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Although it has been generally accepted that porcine reproductive and respiratory syndrome virus (PRRSV) induces weak and delayed protective immunity after infection, it is unclear that the same immunological features can be applicable to all PRRS viruses because huge genetic variation exists even among the same genotypes of PRRSV (Type 1 and 2). In the current study, two genetically distinct type 2 PRRSV strains (VR-2332 and JA142) which showed approximately 90% nucleotide homology based on ORF5 sequences were characterized by both in vitro and in vivo assessments to determine the immunological features of the viruses. For in vitro assessment, porcine alveolar macrophages (PAM) were infected with the viruses at $10^{-3}$ multiplicity of infection (MOI) and then supernatants and cells were collected separately at 36 hrs post infection to determine the relative expression levels of IL-$1{\alpha}$, IL-12, TNF-${\alpha}$ and INF-${\alpha}/{\beta}$ by quantitative RT-PCR. In addition, five PRRSV-free pigs were inoculated with either of JA142 or VR2332 for in vivo assessment. Serum samples were collected every week until 6 weeks post challenge. The serum samples were analyzed for the levels of viremia, PRRSV nucleocapsid-specific antibody and virus neutralizing antibody. Based on those assessments, the two viruses showed different patterns of cytokine expression in PAM and immune responses in pigs after infection. These results indicate that genetically distinct PRRSV strains have different immunological features, which might be criteria for virus classification and selection of candidate virus strains for vaccine development in the future.

Production and characterization of monoclonal antibodies against rabies virus (광견병바이러스에 대한 단크론항체 생산 및 특성)

  • Lee, Seung-Chul;Yoon, Young-Sim;Song, Yun-Kyung;Woo, Gye-Hyeong;Jean, Young-Hwa;Kang, Shien-Young
    • Korean Journal of Veterinary Service
    • /
    • v.33 no.2
    • /
    • pp.105-111
    • /
    • 2010
  • Rabies virus which belongs to the genus Lyssavirus of the family Rhabdoviridae is known as a highly neurotropic virus and causes fatal encephalitis accompanied by severe neurological symptoms in almost all mammals, including humans. In this study, monoclonal antibodies (MAbs) against rabies virus were produced, characterized and applications of MAbs as diagnostic reagents were assessed Spleen and inguinal lymph node cells from Balb/c mouse immunized with purified rabies virus were fused with SP2/O myeloma cells using polyethylene glycol (PEG) and hybridoma cells producing rabies virus-specific MAbs were screened by an indirect fluorescent antibody test. A total of ten MAbs were produced against rabies virus. The protein specificity and neutralizing activity of MAbs were determined by Western blot analysis and fluorescent antibody virus neutralization test, respectively. As a result, two MAbs, 5G3 and 6H4 had specificity for nucleoprotein (N protein) and two other MAbs, 5B1 and 5C1 had neutralizing activity for rabies virus. Some MAbs recognized the rabies virus-infected bovine brain stem cells by immunohistochemistry (IHC) assay. In conclusion, it was confirmed that MAbs produced in this study were rabies virusspecific and could be used as reliable diagnostic reagents for the detection of rabies virus.

Improvement of Titration Method for Hog Cholera Virus and its Serum Neutralizing Anitbody by Means of END Method (END법을 이용한 돼지콜레라바이러스 및 이에 대한 중화항체가 측정법 개량에 대한 시험)

  • Kwon Hyock-Jin;Yoon Seok-Min;Ha Rung-Kong;Cho Sung-Soo;Kim Kgo-Jong;Yoon Ji-Byung
    • Journal of the korean veterinary medical association
    • /
    • v.27 no.12
    • /
    • pp.725-728
    • /
    • 1991
  • The END method for titration of hog cholera virus and its serum neutralizing antibody was improved using ST cells grown and kept in modified media. ST cells were grown in Eagles media containing 0.5$\%$ lactalbumin hydrolysate, 10$\%$

  • PDF

Survey of antibody to chicken anemia agent by virus neutralization test (Virus 중화시험법에 의한 닭 빈혈성인자의 항체조사)

  • Ryoo, Gwang-seon;Koh, Hong-bum
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.2
    • /
    • pp.227-234
    • /
    • 1993
  • A serological survey for antibody to chicken anemia agent(CAA) was carried out by virus neutralization test. Antibody to CAA was detected in broilers and layers at different age groups. The results obtained were summarized as follows ; 1. Of a total of 1,035 chicken sera from 1.16 flocks 617 samples of sera were detected as positive(59.6%) and 95 flocks of a total flocks as positive(81.9%). 2. Proportion of positive sera by age were 92.3 %(88.9~100%) at 1 to 2 weeks of age, 56.4%(16.7~77.8%) at 3 to 9 weeks of age, 85.0%(50.0~100%) at 10 to 14 weeks of age and all tested sera were positive at over the 15 weeks age. 3. In each broiler and layer chicken 63.6% and 68.4% chicks possessed positive sera respectively. 4. Neutralizing antibody titer in age group was various from 1:10 to 1:6,400 and mean titer was 1:400 to 1:800.

  • PDF

THE EFFECT OF GROWTH FACTORS IN PLATELET-RICH PLASMA ON THE ACTIVITY OF OSTEOBLAST CELL LINE (혈소판농축혈장 내의 성장요소가 조골세포주의 활성도에 미치는 영향)

  • Jung Tae-Wook;Kim Yung-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.175-191
    • /
    • 2004
  • Statement of problem: Platelet-rich plasma(PRP) is well known to be very effective method to stimulate and accelerate the healing of bone and soft tissue. However, there are few reports which deal with the mechanisms of the PRP on the activation of the osteoblasts. Purpose: This study was aimed to investigate the effect of growth factors in PRP on the activity of osteoblasts. Material and method: To evaluate the effect on human, human osteoblast cell line was cultured. PRP was extracted from the blood of a healthy volunteer. Using the recombinant growth factors of PDGF, $TGFT-\beta$, IGF-1, bFGF which are mainly found at bone matrix and their neutralizing antibody, the effect of PRP on the attachment and proliferation of osteoblasts was evaluated. To evaluate the autocrine and paracrine effects, conditioned media(CM) of PRP was made and compared with PRP. By the western blot analysis, the expression of growth factors in PRP, CM was examined. Cell morphology was compared by the light microscope. Results : 1) The effects of CM on osteoblast were similar to the effects of PRP. 2) PRP, CM, recombinant $TGF-\beta$, bFGF, IGF-1 showed significantly higher cellular attachment than control(p<0.05) in the cell attachment assay. In the cell proliferation assay, PRP, CM, recombinant $TGF-\beta$, IGF-1, bFGF, PDGF increased significantly cell proliferation(p<0.01). Among the recombinant growth factors, IGF-1 showed the highest cellular attachment and proliferation. 3) In the western blot assay, bFGF, IGF-1, PDGF weve equally expressed in PRP and CM. 4) The attachment of osteoblast cell decreased significantly after the addition of neutralizing antibody against $TGF-\beta$, IGF-1(p<0.05). In the cell proliferation assay, the addition of neutralizing antibody against $TGF-\beta$, bFGF, PDGF, IGF-1 decreased significantly the cellular proliferation(p<0.05). The amount of decreasing in the cell attachment and proliferation is the highest in at-lGF-1. 5) The cells in control group were flattened and elongated with a few cellular processes in the a light microscope. But, the cells appeared as spherical, plump cells with well developed cellular processes in experimental groups. The cells in PRP and CM had more prominent developed features than recombinant growth factor groups. Conclusions : These findings imply that PRP maximize the cellular activity in early healing period using the synergistic effect, autocrine, paracrine effects of growth factors and increase the rate and degree of bone formation.

Selection of Vaccinia Virus-Neutralizing Antibody from a Phage-Display Human-Antibody Library

  • Shin, Yong Won;Chang, Ki-Hwan;Hong, Gwang-Won;Yeo, Sang-Gu;Jee, Youngmee;Kim, Jong-Hyun;Oh, Myoung-don;Cho, Dong-Hyung;Kim, Se-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.651-657
    • /
    • 2019
  • Although smallpox was eradicated in 1980, it is still considered a potential agent of biowarfare and bioterrorism. Smallpox has the potential for high mortality rates along with a major public health impact, eventually causing public panic and social disruption. Passive administration of neutralizing monoclonal antibodies (mAbs) is an effective intervention for various adverse reactions caused by vaccination and the unpredictable nature of emerging and bioterrorist-related infections. Currently, vaccinia immune globulin (VIG) is manufactured from vaccinia vaccine-boosted plasma; however, this production method is not ideal because of its limited availability, low specific activity, and risk of contamination with blood-borne infectious agents. To overcome the limitations of VIG production from human plasma, we isolated two human single-chain variable fragments (scFvs), (SC34 and SC212), bound to vaccinia virus (VACV), from a scFv phage library constructed from the B cells of VACV vaccine-boosted volunteers. The scFvs were converted to human IgG1 (VC34 and VC212). These two anti-VACV mAbs were produced in Chinese Hamster Ovary (CHO) DG44 cells. The binding affinities of VC34 and VC212 were estimated by competition ELISA to $IC_{50}$ values of $2{\mu}g/ml$ (13.33 nM) and $22{\mu}g/ml$ (146.67 nM), respectively. Only the VC212 mAb was proven to neutralize the VACV, as evidenced by the plaque reduction neutralization test (PRNT) result with a $PRNT_{50}$ of ~0.16 mg/ml (${\sim}1.07{\mu}M$). This VC212 could serve as a valuable starting material for further development of VACV-neutralizing human immunoglobulin for a prophylactic measure against post-vaccination complications and for post-exposure treatment against smallpox.

Analysis of the transcripts encoding for antigenic proteins of bovine gammaherpesvirus 4

  • Romeo, Florencia;Spetter, Maximiliano J.;Moran, Pedro;Pereyra, Susana;Odeon, Anselmo;Perez, Sandra E.;Verna, Andrea E.
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.5.1-5.12
    • /
    • 2020
  • The major glycoproteins of bovine gammaherpesvirus 4 (BoHV-4) are gB, gH, gM, gL, and gp180 with gB, gH, and gp180 being the most glycosylated. These glycoproteins participate in cell binding while some act as neutralization targets. Glycosylation of these envelope proteins may be involved in virion protection against neutralization by antibodies. In infected cattle, BoHV-4 induces an immune response characterized by low neutralizing antibody levels or an absence of such antibodies. Therefore, virus seroneutralization in vitro cannot always be easily demonstrated. The aim of this study was to evaluate the neutralizing capacity of 2 Argentine BoHV-4 strains and to associate those findings with the gene expression profiles of the major envelope glycoproteins. Expression of genes coding for the envelope glycoproteins occurred earlier in cells infected with isolate 10/154 than in cells infected with strain 07/435, demonstrating a distinct difference between the strains. Differences in serological response can be attributed to differences in the expression of antigenic proteins or to post-translational modifications that mask neutralizing epitopes. Strain 07/435 induced significantly high titers of neutralizing antibodies in several animal species in addition to bovines. The most relevant serological differences were observed in adult animals. This is the first comprehensive analysis of the expression kinetics of genes coding for BoHV-4 glycoproteins in 2 Argentine strains (genotypes 1 and 2). The results further elucidate the BoHV-4 life cycle and may also help determine the genetic variability of the strains circulating in Argentina.

Immune Reaction of the Vaccinated Hamsters with Combined Hantaan-Puumala Vaccine (신증후출혈열의 혼합백신을 접종한 햄스터에서의 면역성 조사)

  • Lee, Ho-Wang;Chu, Yong-Kyu;Cui, Long-Zhu;Woo, Young-Dae;Ahn, Chang-Nam;Kim, Hoon;Jang, Yang-Seok
    • The Journal of Korean Society of Virology
    • /
    • v.27 no.1
    • /
    • pp.39-47
    • /
    • 1997
  • A large number of viruses belonging to Genus Hantavirus in Family Bunyaviridae are etiologic agents for hemorrhagic fever with renal syndrome (HFRS), or hantavirus pulmonary syndrome (HPS). Hantaan (HTN), Seoul (SED), Belgrade (BEL), Puumala (PUU) serotype viruses are well known causative agents for HFRS in Eurasian continent. Among those viruses Hantaan and Seoul serotypes are well known to cause HFRS in Korea, but there are some sporadic incidence by other than Hantaan or Seoul viruses. Recently we have developed the combined Hantaan-Puumala virus vaccine to prevent world-wide occuring HFRS. This combined vaccine is formalin inactivated, suckling mouse and suckling hamster brain extracts for Hantaan and Puumala viruses, respectively. Protein contents of this purified candidate vaccine is $27\;{\mu}g/ml$, which contains 1,024 ELISA antigen units to each virus, but content of myelin basic protein which is causing experimental allergic encephalomyelitis is less than 0.1 ng/ml. Thirty hamsters were given twice at one month interval intra-muscularly and bled on 30 days after each vaccination from retro-orbital sinus vein. Antibody titers were tested against 5 major serotype viruses, Hantaan, Seoul, Belgrade, Puumala and Sin Nombre viruses by IFA and PRNT. The mean IF antibody titers on 30 days after primary shot were 78.4, 68.8, 68.8, 37.9, and 15.6; mean neutralizing antibody titers were 65.4, 12, 6.1, 65.6 and 0.5 against Hantaan, Seoul, Belgrade, Puumala and Sin Nombre viruses, respectively. The mean IF antibody titers on 30 days after booster shot were 686.9, 567.5, 550.4, 516.3, and 430.9; and neutralizing antibody titers were 710.8, 41.9, 24.3, 409.9, and 1.6 against Hantaan, Seoul, Belgrade, Puumala and Sin Nombre viruses, respectively.

  • PDF