• Title/Summary/Keyword: Neutral and Zwitterionic conformers

Search Result 3, Processing Time 0.016 seconds

Comprehensive Studies on the Free Energies of Solvation and Conformers of Glycine: A Theoretical Study

  • Kim, Chang-Kon;Park, Byung-Ho;Lee, Hai-Whang;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1985-1992
    • /
    • 2011
  • The stable conformers of glycine and the inter-conversions between them were studied theoretically at various levels of theory, B3LYP, MP2, CCSD and CCSD(T), in the gas phase and in aqueous solution. In aqueous solution, the structures examined by use of the conductor-like polarizable continuum model (CPCM) with various cavity models, UA0, UAHF, UAKS, UFF, BONDI and PAULING, and by use of a discrete/continuum solvation model with eight water clusters. The Gibbs free energy differences between the neutral (NE) and zwitterionic conformers (ZW), ${\Delta}G_{Z-N}[=G_{ZW}-G_{NE}]$, in aqueous solution were well reproduced by using the BONDI and PAULING cavity models. However the ${\Delta}G_{Z-N}$ values were underestimated in other cavity models, although the ZW conformers existed as stable species in aqueous solution. In the studies of a discrete/continuum solvation model with eight water clusters, gas phase results are still insufficient to reproduce the experimental findings. However the ${\Delta}G_{Z-N}$ values calculated by use of CPCM method in aqueous solution agreed well with the experimental ones.

Structure and Intramolecular Proton Transfer of Alanine Radical Cations

  • Lee, Gab-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1561-1565
    • /
    • 2012
  • The structures of the four lowest alanine conformers, along with their radical cations and the effect of ionization on the intramolecular proton transfer process, are studied using the density functional theory and MP2 method. The energy order of the radical cations of alanine differs from that of the corresponding neutral conformers due to changes in the basicity of the $NH_2$ group upon ionization. Ionization favors the intramolecular proton transfer process, leading to a proton-transferred radical-cation structure, [$NH_3{^+}-CHCH_3-COO{\bullet}$], which contrasts with the fact that a proton-transferred zwitterionic conformer is not stable for a neutral alanine in the gas phase. The energy barrier during the proton transfer process is calculated to be about 6 kcal/mol.

Interaction of Proline with Cu+ and Cu2+ Ions in the Gas Phase (기체상에서 Cu+ 및 Cu2+ 이온과 proline의 상호작용)

  • Lee, Gab-Yong
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.3
    • /
    • pp.257-265
    • /
    • 2009
  • The structures and metal affinities of the binding configurations of $Cu^{+}$ and $Cu^{2+}$ to proline have been investigated using the hybrid three-parameter Density Functional Theory(DFT/B3LYP). We found that the metal-proline bonding and the energy ordering of several conformers were very different in $Cu^{+}$-proline and $Cu^{2+}$-proline. For $Cu^{+}$-proline, the ground state structure was found to have a bidentated coordination in which $Cu^{+}$ was coordinated to the carbonyl oxygen and imino group nitrogen of neutral proline. On the contrary, the ground state structure of $Cu^{2+}$-proline involves chelation between the two oxygens of the carboxylate group in a zwitterionic proline. The metal ion affinity of proline of the most stable $Cu^{+}$-proline complex was calculated as 76.0 kcal/mol at 6-311++G(d,p) level, whereas the $Cu^{2+}$ ion affinity of proline was calculated as 258.5 kcal/mol.