• Title/Summary/Keyword: Neutral Surface

Search Result 519, Processing Time 0.025 seconds

Upper Bound Analysis on the Forging of Gear-Like Components (기어류 부품의 단조에 관한 상계해석)

  • Min, G.S.;Park, J.U.;Lee, H.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.102-112
    • /
    • 1997
  • This paper describes the method that can construct kinematically admissible velocity fields for forging of gear-like components which have tooth shape around the cylinder. The kinematically admissible velo- city fields for the various gear-like components, involute spur gear, trapezoidal spline, square spline, ser- ration and trochoidal gear, were constructed by pilling up the velocity components according to the shape of tooth and billet. The billets, of hollow and solid, were Al 2218 and 2024. To verify the method, the analyses and experiments were carried out and compared with each other. For analyses, the half pitches of com- ponents were divided into several deformation regions based on their tooth profile. A neutral surface was used to represent the inner flow of material during forging. Its location varied with the energy optimazation and its contour varied with the number of teeth. In experiment, the contour of material filling up the tooth zone is hyperbolic curve caused by the frictional drag on the interface of die-wall/workpiece but, in the analysis, it is an arc which retains the same contour during all forging operation.

  • PDF

Effect of Neutral Salts on the Reactive Dyeing of Silk(I) -Effect of Cations- (중성염이 견의 반응염색에 미치는 영향(I) - 양이온의 영향-)

  • 도성국;박찬헌;권지윤
    • Textile Coloration and Finishing
    • /
    • v.12 no.6
    • /
    • pp.372-379
    • /
    • 2000
  • Four kinds of neutral salts with different cations, LiCl, NaCl, KCl, and CsCl, were added to the dye bath to accurately understand the effect of cations on the reactive dyeing of silk with C. I. Reactive Black 5. The cations of salts added lowered the negative surface potential of the silk, improving equilibrium adsorption and the accessibility of the dyestuff to the fiber greatly and speeding up the dyeing rate in the order of $Li^+>Na^+>K^+>Cs^+$. The activation energy$(E_a)$ for the dyeing was in the order of$Li^+>Na^+>K^+>Cs^+$ but the activation free energy$(\Delta{G}^*)$, or the real energy barrier for the reaction, was in the order of $Li^+>Na^+>K^+>Cs^+$ because the degree of the contribution of E$^{a}$ to the activation entropy$(\Delta{S}^*)$ was $Li^+>Na^+>K^+>Cs^+$. It was found from this result that LiCl had the strongest lowering effect on the negative surface potential of silk. The decrease in $\Delta{S}^*$ should be attributed to the loosely bonded activated complex of dyestufffs, cations and fiber molecules at transition state. It was clarified from the Bronsted equation that salts had the ionic strength effect and the specific salt effect on the reactive dyeing.

  • PDF

DMAB Effects in Electroless Ni Plating for Flexible Printed Circuit Board (DMAB첨가량에 따른 연성회로기판을 위한 무전해 Ni 도금박막에 관한 연구)

  • Kim, Hyung-Chul;Rha, Sa-Kyun;Lee, Youn-Seoung
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.632-638
    • /
    • 2014
  • We investigated the effects of DMAB (Borane dimethylamine complex, C2H10BN) in electroless Ni-B film with addition of DMAB as reducing agent for electroless Ni plating. The electroless Ni-B films were formed by electroless plating of near neutral pH (pH 6.5 and pH 7) at $50^{\circ}C$. The electroless plated Ni-B films were coated on screen printed Ag pattern/PET (polyethylene terephthalate). According to the increase of DMAB (from 0 to 1 mole), the deposition rate and the grain size of electroless Ni-B film increased and the boron (B) content also increased. In crystallinity of electroless Ni-B films, an amorphization reaction was enhanced in the formation of Ni-B film with an increasing content of DMAB; the Ni-B film with < 1 B at.% had a weak fcc structure with a nano crystalline size, and the Ni-B films with > 5 B at.% had an amorphous structure. In addition, the Ni-B film was selectively grown on the printed Ag paste layer without damage to the PET surface. From this result, we concluded that formation of electroless Ni-B film is possible by a neutral process (~green process) at a low temperature of $50^{\circ}C$.

Effects of Hand Positions on Electromyographic Activity in Scapulothoracic Muscles During Push-Up Plus

  • Yoon, Ji-Yeon;Kim, Tae-Hoon;Oh, Jae-Seop
    • Physical Therapy Korea
    • /
    • v.17 no.4
    • /
    • pp.8-15
    • /
    • 2010
  • This study was designed to investigate the effect of different hand positions on scapulothorcic muscle activities during push-up plus exercises. Fourteen healthy males performed push-up plus exercises under three conditions (neutral, $90^{\circ}$ internally rotated, and $90^{\circ}$ externally rotated hand positions), during which the activities of the serratus anterior, pectoralis major, and upper trapezius muscles were recorded using surface electromyography. The statistical significance at three different hand positions was tested by repeated one-way ANOVA. The mean activities of the serratus anterior increased and the mean activities of the pectoralis major decreased in the order of neutral hand position, internally rotated hand position, and externally rotated hand position. There was a significant difference during push-up plus between neutral and externally rotated hand positions as well as in the serratus anterior/pectoralis major activity ratio (p<.0.5). However, no significant differences were found in the activity of the upper trapezius muscle or the serratus anterior/upper trapezius activity ratio. We suggest that the push-up plus exercise performed in the externally rotated hand position could a beneficial strategy for selective strengthening of the serratus anterior muscle, while minimizing the activity of the pectoralis major muscle.

Effect of Head Posture and Breathing Pattern on Muscle Activities of Sternocleidomastoid and Scalene during Inspiratory Respiration (흡기 호흡 시 머리자세와 호흡패턴이 목빗근과 목갈비근의 근활성도에 미치는 영향)

  • Koh, Eun-Kyung;Jung, Do-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.279-284
    • /
    • 2013
  • The purpose of this study was to determine the effect of head posture and respiratory pattern on muscle activities of sternocleidomastoid (SCM) and scalene during maximal respiration. The seventeen subjects with upper-costal breathing pattern were participated in this study. Surface electromyography was used to measure the muscles activities of SCM and scalene. The volume and velocity of inspiration were monitored by using the spirometer in each subject. Each subject was performed the 3-cycle of respiration in each condition. The mean values of three peak muscle activity in each muscle were used in the data analysis. A2 (head posture: forward head posture: FHP vs. neutral posture) X 2 (breathing pattern: costal vs. diaphragmatic) repeated-measures analysis of variance (ANOVA) was used to compare the normalized muscle activities of the SCM and scalene. The results showed that the muscle activities of SCM and scalene in diaphragmatic breathing were significantly lower than those in costal breathing for each head posture (p<.0125). The muscle activities of SCM in neutral position were lower than those in forward head position during costal breathing (p<.0125). The diaphragmatic breathing in neutral position of head is recommended to decrease the tension of the accessory inspiratory muscles during respiration in neck-pain patients with FHP.

Influence of Head-Neck Rotation on Elbow Flexor and Extensor Muscle Activity and Strength in Normal Adults

  • Nam, Seung-Min;Kim, Seong-Gil
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.6
    • /
    • pp.325-328
    • /
    • 2020
  • Purpose: This study examined the effects of the directions of neck rotation position on the muscle activity and strength of the elbow flexor and extensor muscle. Methods: Forty-one healthy adults participated in this study. The subjects were asked to their elbow 90° flexion in three different neck rotations (neutral, ipsilateral, and contralateral) in the sitting position. The muscle activities of the biceps and triceps brachii muscle were measured using surface electromyography. And the muscle strength of the elbow flexor was measured using dynamometer. One way repeated measures ANOVA was used to compare the muscle activity and strength of the elbow flexor and extensor depending on the different neck turning directions. Results: There were significant differences between contralateral neck rotation and ipsilateral neck rotation, contralateral neck rotation and neutral position. But, there was no significant difference in the triceps brachii muscle activity in comparison with the neck rotation. There were significant differences between contralateral neck rotation and ipsilateral neck rotation, contralateral neck rotation and neutral position. Conclusion: To summarize this study, the elbow flexor and extensor muscle activity and strength was highest in the contralateral neck rotation position. In other words, it was possible to confirm the effect of Asymmetrical Tonic Neck Reflex in healthy adults whose primitive reflexes were inhibition, and head and neck positions should be considered during clinical evaluation and treatment.

Changes in Lower Limb Muscle Activity during Lunge according to the Different Angle of Ankle Joint

  • Ryu, Heun-Jae;Kim, Youn-Tae;Park, Hee-Joon;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.33 no.1
    • /
    • pp.40-46
    • /
    • 2021
  • Purpose: This study compared the muscle activity of the lower limb according to the three types of fixed angles of the ankle joint during a lunge exercise. Methods: Twenty healthy subjects performed the lunge motion in a trial including the three types of fixed angle. The lunge motion with a neutral, 20° dorsiflexion, and 20° plantarflexion of the ankle joint were randomized and measured repeatedly. The muscle activity of the rectus femoris (RF), vastus medialis (VM), vastus lateralis (VL), biceps femoris (BF), and semitendinosus (ST) was measured by surface electromyography. Results: In the change in ankle joint angle, the RF, VL, BF, and ST muscle activity showed significant differences (p<0.05). In the 20° dorsiflexion position, the muscle activity of VL, BF, and ST showed a significant decrease compared to that in the neutral position (p<0.017). The muscle activity of RF and VL in the neutral position was greater than that in the 20° plantarflexion position (p<0.017). Only the muscle activity of the BF in the 20° plantarflexion position was significantly greater than the 20° dorsiflexion position (p<0.017). Conclusion: These results revealed a difference in the muscle activity of lower extremities in the proximal region according to the angle of the ankle joint during the lunge.

Development of the direct boundary element method for thin bodies with general boundary conditions (일반 경계 조건을 가진 얇은 물체에 대한 직접 경계 요소법의 개발)

  • 이강덕;이덕주
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.701-708
    • /
    • 1997
  • A direct boundary element method(DBEM) is developed for thin bodies whose surfaces are rigid or compliant. Th eHelmholtz integral equation and its normal derivative integral equation are adopted simultaneously to calculate the pressure on both sides of the thin body, instead of the jump values across it, to account for the different surface conditions of each side. Unlike the usual assumption, the normal velocity is assumed to be discontinuous across the thin body. In this approach, only the neutral surface of the thin body has to be discontinuous across the thin body. In this approach, only the neural surface of the thin body has to be discretized. The method is validated by comparison with analytic and/or numerical results for acoustic scattering and radiation from several surface conditions of the thin body; the surfaces are rigid when stationary or vibrating, and part of the interior surface is lined with a sound-absorbing material.

  • PDF

Study on Non-linear Error Effect of Three Dimensional Control Surface Linkage Using Kinematic Analysis (3차원 조종면 변위센서 링크의 운동학적 해석을 통한 비선형 오차 영향 연구)

  • Lee, Sug-Chon;Kim, Jae-Eun;Lee, Sang-Jong
    • Journal of Aerospace System Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • It is very important to correctly set control surface linkage. But a lot of bad setting case has been seen in especially remote controled airplanes and middle size UAVs. In this paper, a three dimensional linkage from control surface to deflection sensor was analyzed kinematically and a position analysis was simulated using algebraic algorithm in terms of nonlinear error of deflection angle. Three correct settings of the linkage came out of this research. One is two-dimensional motion, another is link ratio of 1 and the other is that effective lever of the control surface should be perpendicular to a pushrod in their neutral position.

Reactive Ion Scattering Study of Ice Surfaces. Proton Transfer and H/D Exchange Reactions

  • Mun, Ui-Seong;Kim, Su-Yeon;Gang, Heon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.64-64
    • /
    • 2010
  • Ice film surfaces were examined by using the reactive ion scattering (RIS) of low energy (<35 eV) cesium ion beams. Neutral molecules (X) on the surface were detected in the form of cesium-molecule ion clusters (CsX+). Ionic species on the surface were desorbed from the surface via a low energy sputtering (LES) process below the threshold energy of secondary ion emission. The RIS and LES methods allowed us to study the H/D exchange reactions between H2O and D2O molecules on the surface and the associated proton transfer mechanisms. Specifically, H/D exchange kinetics was examined for D2O ice films (~10 BL) covered with a small amount of H2O (<0.5 BL), in the presence or absence of HCl adsorbates which provided excess protons on the surface.

  • PDF