• Title/Summary/Keyword: Neutral Beam

Search Result 208, Processing Time 0.032 seconds

A Study on the Equipment of Neutral Beam Assisted Deposition for MgO Protective Layer of High Efficient AC PDP (고효율 AC PDP용 MgO 보호막 형성을 위한 중성빔 보조 증착 장비에 관한 연구)

  • Li, Zhao-Hui;Kwon, Sang-Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.2
    • /
    • pp.63-67
    • /
    • 2008
  • The MgO protective layer plays an important role in plasma display panels (PDPs). Our previous work demonstrated that the properties of MgO thin film could be improved, which were deposited by ion beam assisted deposition (IBAD). However arc discharge always occurs during the IBAD process. To avoid this problem, oxygen neutral beam assisted deposition (NBAD) is used to deposit MgO thin films in this paper. The energy of the oxygen neutral beam was used as the parameter to control the deposition. The experimental results showed that the oxygen neutral beam energy was effective in determining in F/$F^+$ centers, crystal orientation, surface morphology of the MgO thin film, and the discharge characteristics of AC PDP. The lowest firing voltage $(V_f)$ and the highest secondary electron emission coefficient $(\gamma)$ were obtained when the neutral beam energy was 300 eV.

  • PDF

Removal of Aspect-Ratio-Dependent Etching by Low-Angle Forward Reflected Neutral-Beam Etching (Low-Angle Forward Reflected Neutral Beam Etching을 이용한 Aspect-Ratio-Dependent Etching 현상의 제거)

  • Min Kyung-Seok;Park Byoung-Jae;Yeom Geun-Young;Kim Sung-Jin;Lee Jae-Koo
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.4
    • /
    • pp.387-394
    • /
    • 2006
  • In this study, the effect of using a neutral beam formed by low-angle forward reflection of a reactive ion beam on aspect-ratio-dependent etching (ARDE) has been investigated. When a SF6 Inductively Coupled Plasma and $SF_6$ ion beam etching are used to etch poly-Si, ARDE is observed and the etching of poly-Si on $SiO_2$ shows a higher ARDE effect than the etching of poly-Si on Si. However, by using neutral beam etching with neutral beam directionality higher than 70 %, ARDE during poly-Si etching by $SF_6$ can be effectively removed, regardless of the sample conditions. The mechanism for the removal of ARDE via a directional neutral beam has been demonstrated through a computer simulation of different nanoscale features by using the two-dimensional XOOPIC code and the TRIM code.

A Study on the MgO Protective Layer Deposited by Oxygen-Neutral-Beam-Assisted Deposition in AC PDP (산소 중성빔으로 보조증착된 MgO 보호막을 갖는 AC PDP의 특성에 관한 연구)

  • Li, Zhao-Hui;Kwon, Sang-Jik
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.2
    • /
    • pp.96-101
    • /
    • 2008
  • The magnesium oxide (MgO) protective layer plays an important role in plasma display panels (PDPs). Our previous work demonstrated that the properties of MgO thin film could be improved, which were deposited by Ion-Beam-Assisted Deposition (IBAD). However arc discharge always occurs during the IBAD process. To avoid this problem, Oxygen-Neutral-Beam-Assisted Deposition (NBAD) is used to deposit MgO thin films in this paper. The energy of the oxygen neutral beam was used as the parameter to control the deposition. The experimental results showed that the oxygen neutral beam energy was effective in determining in structural and discharge characteristics. The lowest firing inception voltage, the highest brightness and the highest luminous efficiency were obtained when the MgO thin film was deposited with an oxygen neutral beam energy of 300eV. The surface morphology of MgO thin film was also analyzed using AFM (Atomic Force Microscopy) and SEM (Scanning Electron Microscopy).

Control and Design of a Arc Power Supply for KSTAR's the Neutral Beam Injection

  • Ryu, Dong-Kyun;Lee, Hee-Jun;Lee, Jung-Hyo;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.216-226
    • /
    • 2015
  • The neutral beam injection generate ultra-high temperature energy in the tokamak of nuclear fusion. The neutral beam injection make up arc power supply, filament power supply and acceleration & deceleration power supply. The arc power supply has characteristics of low voltage and high current. Arc power supply generate arc through constant output of voltage and current. So this paper proposed suitable buck converter for low voltage and high current. The proposed buck converter used parallel switch because it can be increased capacity and decrease conduction loss. When an arc generated, the neutral beam injection chamber occur high voltage. And it will break output capacitor of buck converter. Therefore the output capacitor was removed in the proposed converter. Thus the proposed converter should be designed for the characteristics of low voltage and high current. Also, the arc power supply should be guaranteed for system stability. The proposed parallel buck converter enables the system stability of the divided low output voltage and high current. The proposed converter with constant output be the most important design of the output inductor. In this paper, designed arc power supply verified operation of system and stability through simulation and prototype. After it is applied to the 288[kW] arc power supply for neutral beam injection.

Influence of Neutral Particle Beam Energy on the Structural Properties of Amorphous Carbon Films Prepared by Neutral Particle Beam Assisted Sputtering

  • Lee, Dong-Hyeok;Jang, Jin-Nyeong;Gwon, Gwang-Ho;Yu, Seok-Jae;Lee, Bong-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.194-194
    • /
    • 2011
  • The effects of argon neutral beam (NB) energy on the amorphous carbon (a-C) films were investigated, while the a-C films were deposited by neutral particle beam assisted sputtering (NBAS) system. The energy of neutral particle beam can be controlled by reflector bias voltage directly as a unique operating parameter in this system. The deposition characteristics of the films investigated of Raman spectra, UV-visible spectroscopy, electrical conductivity, stress measurement system, and ellipsometer indicate the properties of amorphous carbon films can be manipulated by only NB energy (or reflector bias voltage) without changing any other process parameters. We report the effect of reflector bias voltage in the range from 0 to -1KV. By the increase of the reflector bias voltage, the amount of cross-linked sp2 clusters as well as the sp3 bonding in the a-C film coated by the NBAS system can be increased effectively and the composition of carbon thin films can be changed from nano-crystalline graphite phase to amorphous carbon phase.

  • PDF

A new first shear deformation beam theory based on neutral surface position for functionally graded beams

  • Bouremana, Mohammed;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Kaci, Abdelhakim;Bedia, El Abbas Adda
    • Steel and Composite Structures
    • /
    • v.15 no.5
    • /
    • pp.467-479
    • /
    • 2013
  • In this paper, a new first-order shear deformation beam theory based on neutral surface position is developed for bending and free vibration analysis of functionally graded beams. The proposed theory is based on assumption that the in-plane and transverse displacements consist of bending and shear components, in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. The neutral surface position for a functionally graded beam which its material properties vary in the thickness direction is determined. Based on the present new first-order shear deformation beam theory and the neutral surface concept together with Hamilton's principle, the motion equations are derived. To examine accuracy of the present formulation, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending and free vibration responses of functionally graded beam are discussed.

Effect of the Neutral Beam Energy on Low Temperature Silicon Oxide Thin Film Grown by Neutral Beam Assisted Chemical Vapor Deposition

  • So, Hyun-Wook;Lee, Dong-Hyeok;Jang, Jin-Nyoung;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.253-253
    • /
    • 2012
  • Low temperature SiOx film process has being required for both silicon and oxide (IGZO) based low temperature thin film transistor (TFT) for application of flexible display. In recent decades, from low density and high pressure such as capacitively coupled plasma (CCP) type plasma enhanced chemical vapor deposition (PECVD) to the high density plasma and low pressure such as inductively coupled plasma (ICP) and electron cyclotron resonance (ECR) have been used to researching to obtain high quality silicon oxide (SiOx) thin film at low temperature. However, these plasma deposition devices have limitation of controllability of process condition because process parameters of plasma deposition such as RF power, working pressure and gas ratio influence each other on plasma conditions which non-leanly influence depositing thin film. In compared to these plasma deposition devices, neutral beam assisted chemical vapor deposition (NBaCVD) has advantage of independence of control parameters. The energy of neutral beam (NB) can be controlled independently of other process conditions. In this manner, we obtained NB dependent high crystallized intrinsic and doped silicon thin film at low temperature in our another papers. We examine the properties of the low temperature processed silicon oxide thin films which are fabricated by the NBaCVD. NBaCVD deposition system consists of the internal inductively coupled plasma (ICP) antenna and the reflector. Internal ICP antenna generates high density plasma and reflector generates NB by auger recombination of ions at the surface of metal reflector. During deposition of silicon oxide thin film by using the NBaCVD process with a tungsten reflector, the energetic Neutral Beam (NB) that controlled by the reflector bias believed to help surface reaction. Electrical and structural properties of the silicon oxide are changed by the reflector bias, effectively. We measured the breakdown field and structure property of the Si oxide thin film by analysis of I-V, C-V and FTIR measurement.

  • PDF

An Analysis on the KSTAR neutral beam injection line (KSTAR 중성입자빔 수송라인 해석)

  • 임기학;김진춘;권경훈;조승연
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.4B
    • /
    • pp.556-564
    • /
    • 1999
  • The analysis on heat fluxed on and transmission efficiencies by the collimators of neutral beam injection lines in KSTAR tokamak device has been carried out. And a mathematical model describing non-Gaussian beam distribution profile has been established. A neutral beam injection device is composed of 3 separate ion sources and corresponding beam transport lines, which deal with 7.8 MW of beam power, respectively. The divergence angles of ion beam are $1.2^{\circ}$and $0.5^{\circ}$, in vertical and horizontal directions, respectively. The maximum normal heat load on source exit scraper is 9.1 kW/$\textrm{cm}^2$ and net beam transmission efficiency is ~28%. The effect of misalignment of ion source and scrapers on the scraper heat load and beam transmission also has been analyzed.

  • PDF

Formation of Neutral Beam by Low Angle Reflection

  • Lee, Do-Haing;Jung, Min-Jae;Bae, Jung-Woon;Kim, Sung-Jin;Lee, Jae-Koo;Yeom, Geun-Young
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.7 no.1
    • /
    • pp.23-26
    • /
    • 2003
  • In this study, a neutral beam was formed using a low angle forward reflection of the ion beam and its degree of neutralization at different reflection angles was investigated. When the ion beam was reflected by a reflector at the angles lower than 15$^{\circ}$, most of the ions reflected were neutralized and the lower reflector angle showed the higher degree of neutralization. Photoresist(PR) and SiO$_2$ etchings were carried out with the neutralized oxygen and fluorine radical fluxes, respectively, and highly anisotropic etch profiles could be obtained suggesting the formation of highly directional neutral flux.

  • PDF

Atomic Layer Etching of Silicon Using a Ar Neutral Beam of Low Energy (저에너지의 Ar 중성빔을 이용한 Silicon의 Atomic Layer Etching)

  • Oh, Chang-Kwon;Park, Sang-Duk;Yeom, Geun-Young
    • Korean Journal of Materials Research
    • /
    • v.16 no.4
    • /
    • pp.213-217
    • /
    • 2006
  • In this study, atomic layer etching of Si has been carried out using $Cl_2$ adsorption followed by the irradiation Ar neutral beam of low energy. In this experiment, the etch rate of Si was dependent on the $Cl_2$ pressure(the surface coverage of chlorine) and the irradiation time of Ar neutral beam(the flux density of Ar neural beam). And the etch rate of Si(100) and Si(111) were saturated exactly at one monolayer per cycle with $1.36{\AA}/cycle\;and\;1.57{\AA}/cycle$, respectively.