• Title/Summary/Keyword: Neurosecretory cells

Search Result 19, Processing Time 0.027 seconds

Metamorphic Changes of the Neurosecretory Cells in the Brains of Wax Moth Gafferfa mellonella during Metamorphosis (꿀벌부채명나방 뇌신경분비세포의 변태에 따른 변화)

  • 이봉희;강성훈;김민영;김우갑
    • The Korean Journal of Zoology
    • /
    • v.32 no.2
    • /
    • pp.120-133
    • /
    • 1989
  • The paraidehyde-fuchsin(PAE)-positive neurosecretory cells in the brains of wax moth Galleria mellonella have been morphologically examined at the six different metamorphic stages. During the metamorphosis, neurosecretory cells in the brain can be found in the five unclei of pars intercerebralis, lateral region of protocerebrum, optic lobe, deutocrebrum and tritocerebrum. The five nuelel include one to seven neurosecretory cells. On the bases of cell sizes and histochemical specificities of neurosercretion within cells, all the PAF-positive neurosercretory cells included in the six different metamorphic brains can be recognized as four species of neurosecretory cells as follows; (1) large (about 25 $\mu$m), neurosecretion-parcked cell (type I neurosecretory cell), (2) large, granule-dispersed cell (type II neurosecretury cell), (3) small (about 15 $\mu$m), neurosecretion-packed cell (type III neurosecretory cell), and (4) small, granule-dispersed cell (type IV neurose-cretory cell). The three tb seven medial neurosecretory cells are included in the pars intercerebralis of the six different metamorphic brains. With the increase of days from the late larva to the adult the type I cells of medial neurosecretory cells gradually decrease in number, but the respective three type II neurosecretory cells appear in the five different metamorphic brains except in pupa 2 day before the emeregnce of the adult which has only one type II. The one to five lateral neurosecretory cells are observed in the lateral region of protocerebrum from thepupa just after pupation to the adult. The type IV neurosecretory cells are the most in number of lateral neurosecretory cells. The one type Ineurosecretory cells are included near the optic lobe of only the 4-day-old pupa. the one deutocerebral neurosecretory cell, type II, appears only in the adult. The tritocerebrum includes both three neurosecretory cells in the late larva and one neuresecretory cell in the adult. In the late larva the two tritocerebral neurosecretory cells are type Ill neurosecretory cell and the one is type IV. The remaining one tritocerebral neurosecretory cell is type IV.

  • PDF

Ultrastructural studies on the neurosecretory cells in the pars intercerebralis of larvae of tasar silkworm, Antheraea mylitta (D) eco-race Bhandara (Lepidoptera: Saturniidae)

  • Barsagade, Deepak Dewaji;Gharade, Shruti Arvind
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.1
    • /
    • pp.120-127
    • /
    • 2014
  • The cerebral neurosecretory cells (NSC) constitute four paired groups, medial (MNC), lateral (LNC-I, LNC-II) and posterior (PNC) in the brain of larvae of tasar silkworm Antheraea mylitta (D) Eco-race Bhandara. The MNC is the largest groups of peptidergic neurosecretory cells and are located in the pars intercerebralis region. The transmission electron microscopic (TEM), ultrastructure of the NSC confirmed the presence of mitochondria, endoplasmic reticulum, Golgi bodies, lysosomes and neurosecretory granules. The median neurosecretory cells shows secretory activity and release of secretory products, the neurosecretory granules (NSG) in the axons of NSC as well as the blood sinus.

Neurosecretory Cell Types and Their Seasonal Secretory Activity in the Eyestalk of Palaemon macordactylus (붉은줄참새우, Palaemon macrodacthylus의 안병내 신경성 분비세포의 계절별 분비 활성)

  • Kim Jae-Won;Park Kie-Young
    • Development and Reproduction
    • /
    • v.8 no.1
    • /
    • pp.43-47
    • /
    • 2004
  • The present paper studied neurosecretory cell types and their seasonal secretory activity in the eyestalk of Palaemon macrodactylus. The samples were monthly collected in Nakdong estuary for one year. The eyestalk consisted of lamina ganglionaris, medulla externa medulla interna, and medulla terminaris. four types of neurosecretory, A-, B-, C- and D-cells are found in the eyestalk. The A-cells are located in the medulla externs. Althoush the B- and C-cells are located in the medulla interna and medulla terminalis, B-cells are predominant in medulla interna and C-cells are usually distributed in medulla terminaris. The size of D-cells are larger than other types of cells in size. The neurosecretory cells except D-cells show a remarkable change with month. The A-, B-, and C-cells are activated from March and April to July, and decreased at August.

  • PDF

Architecture of Cerebral Neuroendocrine System in the Lawa of Cabbage Butterfly Pieris rapue (배추흰나비 5령유충의 뇌신경내분비계의 구조)

  • 이봉희;윤혜련심재원
    • The Korean Journal of Zoology
    • /
    • v.36 no.2
    • /
    • pp.285-292
    • /
    • 1993
  • This investigation has been carried out to clarify structural architecture of cerebral neuroendocrine systems in the fifth instar lanra of cabbage butterfly Pieris rapae. In order to examine the cerebral neurosecretorv cell systems the brain and retrocerebral neuroendocrine complex were histochemically stained with the paraldehvde fuchsin. The brain of the fifth instar laMa contains three kinds of neurosecretorv cells: medial, lateral and tritocerebral neurosecretorv cells. The axon bundles of medial and lateral neurosecretory cells form medial neurosecretory pathway(MNSP) and lateral neurosecretorv pathwav(LNSP) within the brain respectively. Especially, prior to exiting the brain, the axon bundles of medial neurosecretorH cells located in both left and right cefebral hemispheres decussate in cerebral medial region and project to contralateral retrocerebral neuroendocrine complexes. Outside the brain the axon bundles of medial and lateral neurosecretory cells form the nenri corporis cardiaca(NCC) I and II respectively. The NCC I and ll run together to the retrocerebral neuroendocrine complex, forming the large nenre bundles in both left md right sides. The anon bundles of tritocerebral neurosecretory cells which pass through the brain along the tritocerebral neurosecretory pathway (TNSP) form the Ncc III outids the train. some of the Ncc I and it terminate in the corpus cardiacum, while the others pass through the corpus cardiacum without termination. The nerve bundle which passes the corpus cardiacum forms the nenrus corforis allatum(NCA) I which runs between the corpus cardiacum and the corpus allatum. Theyt are finally innervated to the corpus allatum. The Ncc III Projects to the corpus cardiRcum. However, most of NCC III priss through the corpus cardiacum without branching and then run down for another organ.

  • PDF

Histological study of neurosecretory cells in the brain and the thoracic ganglion with gonadal development of Palaemon serrifer (줄새우아재비, Palaemon serrifer의 생식소발달에 따른 뇌와 흉부신경절 신경분비세포의 조직학적 연구)

  • KIM Myung-Hee;LEE Taek-Yuil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.24 no.5
    • /
    • pp.327-339
    • /
    • 1991
  • The present paper is a histological study of neurosecretory cells in the brain and the thoracic ganglion with the gonadal development in Palaemon serrifer. The reproductive cycle includes the successive stages of the growing period (February-March), the mature period(April-May), the ripe and spent periods(June-August) and the degenerative and resting periods(September-January). The neurosecretory cells are grouped into four types based on Matsumoto(1958) : A-,A'-, B- and E-cells. A- and A'-cells are $80-90{\mu}m,\;B-cell\;is\;30-40{\mu}m$ and E-cell is $10-15{\mu}m$. A- and B-cells are the positive to CHP and AF, while B-cell is the positive only to AF. The secretory grannules of a A-cell are transported to the axon, and at the same time they are discharged through the peripheral membrane. Of the four neurosecretory cells, A- and I-cells show the difference of secretory activity according to the gonad developmental process. In the female, A-cells show secretory activity for the ripe and spent periods, while I-cells show for the mature, ripe and spent periods. In the male, A-cells show secretory activity for the mature, ripe and spent periods, while I-cells show for the growing, mature, ripe and spent periods.

  • PDF

Ultrastructure of Nerve Cells in the Pars Intercerebralis of Cabbage Butterfly Pieris rapae L. (배추흰나비 (Pieris rapae L.) 뇌간부(腦間部)의 신경세포(神經細胞)에 대한 미세구조(微細構造))

  • Lee, B.H.;Kim, W.K.
    • Applied Microscopy
    • /
    • v.12 no.2
    • /
    • pp.55-68
    • /
    • 1982
  • The study on the nerve cells in the pars intercerebralis(IP) of 5-day-old cabbage butterfly Pieris rapae L. was performed to observe their ultrastructures and classify them on the basis. of the differences in size, shape and relative distribution cf cell organelles. The brain-subesophageal ganglion complex was fixed in 1% paraformaldehyde-1% gluaraldehyde mixture and embedded in araldite mixture. The transverse thin sections of IP were stained with uranyl acetate and lead citrate and examined by Hitachi 500 and ]EM 100B electron microscope. Five distinct types. of nerve cells are recognized and are arbitrarily designated as Type I, Type II Type III, Type IV and Type V. Type I neurone: These neurones are neurosecretory cells. Several neurosecretory cells are. recognized in the pars intercerebralis. They are roughly round or peach-shaped cells measuring $13{\sim}25{\mu}m$ in diameter. The rounded nucleus shows about $5{\sim}10{\mu}m$ in diameter. The chromatin is predominantly diffused with only occasional dense patches. The perikaryon contains numerous. mitochondria, free polyribosomes and neurosecretory granules. The neurosecretory granules are relatively uniform in electron density, and each one is about $100{\sim}400{\mu}m$ in diameter and surrounded by a single membrane. The granules are also observed mostly as in groups. In one group of neurones the cisternae of endoplasmic reticulum are distended or in other group of neurones are not distended. Golgi saccules are slightly dilated at their lateral extremities and contains. frequenty dense rounded materials. Type II neurone: Thes have the largest soma in the pars intercerebralis about $30{\sim}35{\mu}m$ in diameter. They also show roughly polygonal in shape. The nucleus is elongated or sickle-shaped. The chromatin is mainly in the euchromatin form. The perikarya in these cells are well populated with populated with free ribosomes and contain numerous mitochondria and Golgi bodies. The cisternae of granular endoplasmic reticulum are also well distributed. Type III neurone: They are oval or spindle-shaped and also medium-sized. neurones approximately $15{\sim}17{\mu}m$ in length. The nucleus is oval or slightly elongated in shape and $8{\sim}9{\mu}m$ in length. The chromatin occurs in diffused form. The cytoplasm contains many filamentous or oval mitochondria. The perikaryon has also numerous free polyribosomes and cisternae of granular endoplasmic reticulum. Type VI neurone: They are roughly polygonal in shape probably due to the close approximation of the adjacent cells. The soma is about $7{\sim}8{\mu}m$ in diameter. The nucleus is round or oval in shape and $5.0{\sim}5.8{\mu}m$ in diameter. The necleus also occupies a large proprion of the cell body. The perikaryon is well populated with free ribosomes and contains several mitochondria and cistenae of granular endoplasmic reticulum. Type V neurone: These neurones are similar to Type VI neurones in various respects such as cell size and cell inclusion, but they differ from Type IV neurones in shape. The soma is oval or slightly elongated. The cell body contains several filamentous and oval mitochondria.

  • PDF

Eine Structure of Cerebral Ganglion in the Korean Planaria, Dugesia japonica (한국산 플라나리아(Dugesia japonica) 뇌신경절의 미세구조)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.29 no.1
    • /
    • pp.57-66
    • /
    • 1999
  • The nervous tissue in the cerebral ganglion of Korean planaria was observed using electron microscope. The obtained results are as follows: A cerebral ganglion is composed of the nerve cells, neurosecretory cells, neuroglial cells and neuropils. The nerve cells are round or ovoidal-shaped cells (diameter, $5{\mu}m$), which has a large ellipsoidal nucleus containing the evenly developed heterochromatin. Their cytoplasms were found to be relatively simple, because of their undeveloped cell organelles. The neurosecretory cells are long and ellipsoid or spindle-shaped cells, where there were found a large ellipsoidal nucleus and cytoplasm filled with secretory granules (diameter, 60 nm). The neuroglial cells were seldom observed. They are spindle-shaped cells (size, $6\times0.8{\mu}m$), which were observed mainly among the nerve fibers. The neuropils are formed by the nerve fibers and nerve endings which are filled with mitochondria, neurotubules and secretory granules of four kinds (high electron dense granules of sizes 75 nm, 50 nm and 37 nm, and electron lucent granule of size 30 nm etc.). These granular vesicles are divided into single vesicle type and compound vesicle type in the nerve terminals, and neuronal synapses were observed to be the axo-dendritic and dendro-dendritic synapse type.

  • PDF

Effects of insect growth regulators(IGRs) on vitellogenesis in insect (곤충의 난황형성에 대한 곤충성장조절제의 작용)

  • Lee, Hee-Kwon;Lee, Jong-Jin;Kim, Moo-Key;Lee, Hoi-Seon
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.4
    • /
    • pp.11-19
    • /
    • 2001
  • This review discusses the effects and roles of insect hormones and insect growth regulators (IGRs) on vitellogenesis in adult insects. Insect vitellogenesis is regulated by hormones such as juvenile hormone (JH), ecdysteroids, and neurosecretory hormones (ovaryecdysteroidogenic hormone : OEH) released by neurosecretory cells, diet, and other elements(male specific protein of sperm fluid). In the fat bodies, the vitellogenins are synthesized by the stimulation of JH released by corpus allatum (CA) and ecdysteroids produced by follicle cells with the ovary in most insects. Furthermore, vitellogenins are released into the hemolymph, transported to the ovarioles by carrier protein, and incorporated into oocytes for the developing ovary. Of IGRs, juvenile hormone and its mimics such as methoprene and pyriproxifen appear to have pharmacological effects such as membrane lysis, destruction of salivary grand and midgut epithlial cells, fat body cells, and ovarian tissue, and also anti-juvenile hormone such as precocenes I and II appear to have specific cytotoxicity such as inhibition of corpus allatum and oocytes development. These results suggest that IGRs may be useful as agents for integrated pest management.

  • PDF

Facilitation of AMPA receptor-mediated steady-state current by extrasynaptic NMDA receptors in supraoptic magnocellular neurosecretory cells

  • Pai, Yoon Hyoung;Lim, Chae Seong;Park, Kyung-Ah;Cho, Hyun Sil;Lee, Gyu-Seung;Shin, Yong Sup;Kim, Hyun-Woo;Jeon, Byeong Hwa;Yoon, Seok Hwa;Park, Jin Bong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.4
    • /
    • pp.425-432
    • /
    • 2016
  • In addition to classical synaptic transmission, information is transmitted between cells via the activation of extrasynaptic receptors that generate persistent tonic current in the brain. While growing evidence supports the presence of tonic NMDA current ($I_{NMDA}$) generated by extrasynaptic NMDA receptors (eNMDARs), the functional significance of tonic $I_{NMDA}$ in various brain regions remains poorly understood. Here, we demonstrate that activation of eNMDARs that generate INMDA facilitates the ${\alpha}$-amino-3-hydroxy-5-methylisoxazole-4-proprionate receptor (AMPAR)-mediated steady-state current in supraoptic nucleus (SON) magnocellular neurosecretory cells (MNCs). In $low-Mg^{2+}$ artificial cerebrospinal fluid (aCSF), glutamate induced an inward shift in $I_{holding}$ ($I_{GLU}$) at a holding potential ($V_{holding}$) of -70 mV which was partly blocked by an AMPAR antagonist, NBQX. NBQX-sensitive $I_{GLU}$ was observed even in normal aCSF at $V_{holding}$ of -40 mV or -20 mV. $I_{GLU}$ was completely abolished by pretreatment with an NMDAR blocker, AP5, under all tested conditions. AMPA induced a reproducible inward shift in $I_{holding}$ ($I_{AMPA}$) in SON MNCs. Pretreatment with AP5 attenuated $I_{AMPA}$ amplitudes to ~60% of the control levels in $low-Mg^{2+}$ aCSF, but not in normal aCSF at $V_{holding}$ of -70 mV. $I_{AMPA}$ attenuation by AP5 was also prominent in normal aCSF at depolarized holding potentials. Memantine, an eNMDAR blocker, mimicked the AP5-induced $I_{AMPA}$ attenuation in SON MNCs. Finally, chronic dehydration did not affect $I_{AMPA}$ attenuation by AP5 in the neurons. These results suggest that tonic $I_{NMDA}$, mediated by eNMDAR, facilitates AMPAR function, changing the postsynaptic response to its agonists in normal and osmotically challenged SON MNCs.

An Ultrastructural Study on the Nerve Cell Bodies of Subesophageal Ganglion from the Cabbage Butterfly, Pieris rapae L. (배추흰나비 식도하신경절(食道下神經節)의 신경세포(神經細胞)에 관(關)한 미세구조적(微細構造的) 연구(硏究))

  • Kim, Woo-Kap;Lee, Bong-Hee
    • Applied Microscopy
    • /
    • v.11 no.1
    • /
    • pp.1-9
    • /
    • 1981
  • The study on the nerve cells in the subesophageal ganglion of 5-day-old cabbage butterfly, Pieris rapae L., was performed to observe their ultrastructures and classify them on the basis of the differences in size, shape and relative distribution of cell organelles. 1. Type I neurons: These cells are neurosecretory granules ranging 100 to 300 nm in size. 2. Type II neurons: As giant neurons averaging 25 to $30{\mu}m$ in size, such as mitochondria and Golgi apparatus. 3. Type III neurons: These spindle-shaped cells range 9 to $15{\mu}m$ in width. 4. Type IV neurons: These cells have a range of diameter from 12 to $16 {\mu}m$. The cells are abundantly observed in the subesophageal ganglion. 5. Type V neurons: These cells are very small nerve cells with 4.5 to $8.0{\mu}m$ in size and have a prominent nucleus.

  • PDF