• Title/Summary/Keyword: Neuropharmacological

Search Result 27, Processing Time 0.021 seconds

Quercetin Inhibits the 5-Hydroxytryptamine Type 3 Receptor-mediated Ion Current by Interacting with Pre-Transmembrane Domain I

  • Lee, Byung-Hwan;Jung, Sang-Min;Lee, Jun-Ho;Kim, Jong-Hoon;Yoon, In-Soo;Lee, Joon-Hee;Choi, Sun-Hye;Lee, Sang-Mok;Chang, Choon-Gon;Kim, Hyung-Chun;Han, YeSun;Paik, Hyun-Dong;Kim, Yangmee;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.20 no.1
    • /
    • pp.69-73
    • /
    • 2005
  • The flavonoid, quercetin, is a low molecular weight substance found in apple, tomato and other fruit. Besides its antioxidative effect, quercetin, like other flavonoids, has a wide range of neuropharmacological actions including analgesia, and motility, sleep, anticonvulsant, sedative and anxiolytic effects. In the present study, we investigated its effect on mouse 5-hydroxytryptamine type 3 ($5-HT_{3A}$) receptor channel activity, which is involved in pain transmission, analgesia, vomiting, and mood disorders. The $5-HT_{3A}$ receptor was expressed in Xenopus oocytes, and the current was measured with the two-electrode voltage clamp technique. In oocytes injected with $5-HT_{3A}$ receptor cRNA, quercetin inhibited the 5-HT-induced inward peak current ($I_{5-HT}$) with an $IC_{50}$ of $64.7{\pm}2.2{\mu}M$. Inhibition was competitive and voltage-independent. Point mutations of pre-transmembrane domain 1 (pre-TM1) such as R222T and R222A, but not R222D, R222E and R222K, abolished inhibition, indicating that quercetin interacts with the pre-TM1 of the $5-HT_{3A}$ receptor.

Differential Effects of Quercetin and Quercetin Glycosides on Human α7 Nicotinic Acetylcholine Receptor-Mediated Ion Currents

  • Lee, Byung-Hwan;Choi, Sun-Hye;Kim, Hyeon-Joong;Jung, Seok-Won;Hwang, Sung-Hee;Pyo, Mi-Kyung;Rhim, Hyewhon;Kim, Hyoung-Chun;Kim, Ho-Kyoung;Lee, Sang-Mok;Nah, Seung-Yeol
    • Biomolecules & Therapeutics
    • /
    • v.24 no.4
    • /
    • pp.410-417
    • /
    • 2016
  • Quercetin is a flavonoid usually found in fruits and vegetables. Aside from its antioxidative effects, quercetin, like other flavonoids, has a various neuropharmacological actions. Quercetin-3-O-rhamnoside (Rham1), quercetin-3-O-rutinoside (Rutin), and quercetin-3-(2(G)-rhamnosylrutinoside (Rham2) are mono-, di-, and tri-glycosylated forms of quercetin, respectively. In a previous study, we showed that quercetin can enhance ${\alpha}7$ nicotinic acetylcholine receptor (${\alpha}7$ nAChR)-mediated ion currents. However, the role of the carbohydrates attached to quercetin in the regulation of ${\alpha}7$ nAChR channel activity has not been determined. In the present study, we investigated the effects of quercetin glycosides on the acetylcholine induced peak inward current ($I_{ACh}$) in Xenopus oocytes expressing the ${\alpha}7$ nAChR. $I_{ACh}$ was measured with a two-electrode voltage clamp technique. In oocytes injected with ${\alpha}7$ nAChR copy RNA, quercetin enhanced $I_{ACh}$, whereas quercetin glycosides inhibited $I_{ACh}$. Quercetin glycosides mediated an inhibition of $I_{ACh}$, which increased when they were pre-applied and the inhibitory effects were concentration dependent. The order of $I_{ACh}$ inhibition by quercetin glycosides was Rutin${\geq}$Rham1>Rham2. Quercetin glycosides-mediated $I_{ACh}$ enhancement was not affected by ACh concentration and appeared voltage-independent. Furthermore, quercetin-mediated $I_{ACh}$ inhibition can be attenuated when quercetin is co-applied with Rham1 and Rutin, indicating that quercetin glycosides could interfere with quercetin-mediated ${\alpha}7$ nAChR regulation and that the number of carbohydrates in the quercetin glycoside plays a key role in the interruption of quercetin action. These results show that quercetin and quercetin glycosides regulate the ${\alpha}7$ nAChR in a differential manner.

LOW PERMEABILITY THROUGH THE BLOOD-BRAIN BARRIER OF MORPHINE GLUCURONIDES.

  • Kang, Young-Sook;Ulrich Bickel;Oliver P. Schumacher;Karlheinz Voigt
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.246-246
    • /
    • 1996
  • The glucuronide conjugates of morphine have been claimed to exert significant neuropharmacological effects. Morphine-6-glucuronide (M6G) may be a potent opioid agonist in vivo, and morphine-3-glucuronide (M3G) may act as a weak opioid antagonist. The present study addressed the permeability of the blood-brain barrier (BBB) for these metabolites compared to morphine. Tracers were prepared by enzymatic glucuronidation of U-methyl-$^3$H]-morphine. Brain uptake in rats was measured by the internal carotid artery perfusion technique and after i.v. bolus injections. In the perfusion experiments morphine showed a permeability-surface area product (PS) of 3.52${\pm}$0.61 ${\mu}$L min$\^$-1/ g$\^$-1/ Uptake seems to be mediated by passive diffusion and was not saturable by 100 ${\mu}$M morphine in the perfusate. The BBB permeability of [$^3$H]-M3G and [$^3$H]-M6G was too low to be quantified after 5 min of perfusion. Brain uptake of [$^3$H]-M3G and [$^3$H]-M6G 60 min after i.v. bolus injection reached 0.0060${\pm}$0.0003 and 0.0030${\pm}$0.0005% injected dose per g, respectively. From these brain concentrations and from the corresponding plasma concentration - time curves, BBB PS values of 0.14${\pm}$ 0.02 ${\mu}$L min$\^$-1/g$\^$-1/ and 0.11 ${\pm}$ 0.01 ${\mu}$L min$\^$-1/g$\^$-1/, respectively, were calculated. The ratio of BBB PS values is complementary to the analgesic potencies of morphine and M6G after different routes of administration. The low PS of MSG explains, why it is approximate]y equipotent to morphine after systemic injection, although it is about 2 orders of magnitude more potent than morphine after administration directly into the central nervous system.

  • PDF

Detection of Undeclared Betamethasone Derivatives in Cosmetic Products Labeled to Contain Zinc Pyrithione as the Active Ingredient (아연피리치온을 유효성분으로 표기한 화장품류에서 미표기 성분인 베타메타손 유도체의 검출)

  • Lee, Jeong-Pyo;Park, Sung-Hwan;Yang, Seong-Jun;Kim, Sun-Mi;Son, Kyung-Hun;Yun, Mi-Ok;Choi, Sang-Sook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.35 no.1
    • /
    • pp.11-17
    • /
    • 2009
  • Betamethasone propionate, an anti-inflammatory glucocorticosteroid, was detected in cosmetics with no indication on the label of this compound as an ingredient. The product was formulated as a topical spray or shampoo and labeled to contain zinc pyrithione as the active ingredient. A thin-layer chromatographic analysis was carried out on silica gel plates to provide a first indication about the presence of a compound with steroid structure and reactivity; then high-performance liquid chromatography (HPLC) separation allowed the identification of the corticosteroid agent and its quantification. To identify the corticosteroid agent from these commercial samples we collected the fractions suspected to have ketol steroids by prep HPLC and identified the compound as betamethasone propionate by NMR and MS spectrometry. Then we synthesized the standard for the betamethasone 17-propionate and 21-propionate and quantitate the corticosteroids from the sample by HPLC with that standards. By this method we identified the corticosteroid compounds from some commercial cosmetics such as zinc pyrithione sprays. The finding of betamethasone propionate in the products was shown by comparison to an authenticated standard of betamethasone propionate by retention time on reverse-phase HPLC. Two of the tested products contained betamethasone propionate at the levels of 0.005 ${\sim}$ 0.02% and the others were free of betamethasone propionate.

A Study on the Circadian Rhythm of Opiate Receptor in Rat Brain (백서 뇌내 Opiate 수용체의 일주기 변동에 대한 연구)

  • Lee, Moo-Suck;Kim, Ki-Won;Cho, Kyu-Park
    • The Korean Journal of Pharmacology
    • /
    • v.20 no.2
    • /
    • pp.23-34
    • /
    • 1984
  • To investigate diurnal variations of opiate receptor binding and its modification by experimental condition or treatment of various centrally-acting drugs, the amount of maximum $^3H-morphine$ binding in rat midbrain homogenates was measured at 4 hour intervals for 24 hours. Animals were conditioned under the controlled L : D, 12 : 12 cycle or D: D, 12 : 12 cycle, for 3 weeks and treated with 0.5 ml of physiological saline or drugs for 2 weeks. A highly significant diurnal rhythm with peak at 22 hour of early dark phase with an amplitude$(0.68{\pm}0.06\;pmole/mg\;protein)$ of +51.1% and nadir $(0.33{\pm}0.03\;mole/mg\;prtein)$ at 18 hour of late light phase with an amplitude of -26.6% was found in control group. 24 tour mean of $^3H-morphine$ binding was $0.45{\pm}0.03\;pmole/mg$ protein respectively. Constant dark adaptation or treatment of reserpine, pargyline, imipramine, amphetamine and chlorpromazine modified the diurnal rhythm in the time of peak and nadir binding shape, phase, amplitude of the diurnal curve and 24 hour mean of $^3H-morphine$ binding. However, Kd values were not changed in all experimental groups : Statistical analysis at times of least and great binding indicates that the differences in $^3H-morphine$ binding were due to changes not in the affinity, but in the number of binding sites. The results are interpreted with regard to the diurnal rhythm of opiate receptor finding. The modes of action of psychoactive drugs are closely related to postulated changes of receptor sensitivity in neuropharmacological aspects.

  • PDF

Neuropeptides in Clinical Psychiatric Research : Endorphins and Cholecystokinins (정신질환에 있어서의 신경펩타이드 연구 - Endorphin과 cholecystokinin을 중심으로 -)

  • Kim, Young Hoon;Shim, Joo Chul
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.1
    • /
    • pp.34-45
    • /
    • 1998
  • We provide the reader with a brief introduction to the neurobiology of neuropeptides. Several comprehensive reviews of the distribution and neurochemical, neurophysiological, neuropharmacological and behavioral effects of the major neuropeptides have recently appeared. In reviews of the large number of neuropeptides in brain and their occurance in brain regions thought to be involved in the pathogenesis of major psychiatric disorders, investigators have sought to determine whether alternations in neuropeptide systems are associated with schizophrenia, mood disorders, anxiety disorders, alcoholism and neurodegenerative disease. There is no longer any doubt that neuropeptide-containing neurons are altered in several neuropsychiatric disorders. One of the factors that has hindered neuropeptide research to a considerable extent is the lack of pharmacological agents that specifically alter the synaptic availability of neuropeptides. With the exception of naloxone and naltrexone, the opiate-receptor antagonists, there are few available neuropeptide- receptor antagonists. Two independent classes of neuropeptide-receptor antagonists has been expected to be clinically useful. Naltrexone, a potent ${\mu}$-receptor antagonist, has been used successfully to reduce the need for alcohol consumption. And cholecycstokinin antagonists are now in development as a new class of anxiolytics, which would be expected to be free from tolerance and physical dependence and lack of sedation. In this review, we deal with these two kinds of neuropeptide system, the opioid system and cholesystokinins in the brain. The role of opioid systems in the reinforcement after alcohol consumtion and that of cholesystokinins in the pathogenesis of anxiety will be discussed briefly. As we know, the future for neuropeptides in psychiatry remains bright indeed.

  • PDF

Monitoring Methylmercury in Abyssal Fish (심해성 어류 중 메틸수은 모니터링)

  • Kim, Seong-Cheol;Jang, Jin-Wook;Kim, Hyun-Ah;Lee, Sang-Ho;Jung, Young-Ji;Kim, Ji-Yeon;Ahn, Jong-Hoon;Park, Eun-Hye;Ko, Yong-Seok;Kim, Dong-Sul;Kim, Sang-Yub;Jang, Young-Mi;Kang, Chan-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.383-389
    • /
    • 2010
  • The aim of this study was to determine the methylmercury (MeHg) levels in abyssal fish species. The MeHg in the fishes was extracted with hydrochloric acid and toluene and then purified using an L-cysteine solution. The extract was analyzed with a gas chromatography-electron capture detector (GC-${\mu}ECD$) with a thermon Hg-capillary column. The detection limit and the recovery of the method were 0.002 and 84.2-98.5% (mean, 93.4%), respectively. The MeHg content in 492 abyssal fishes ranged from 0.037 to 2.009 mg/kg. The levels of MeHg [range, mg/kg (mean)] were significantly dependent on fish species and presented as the following; 0.157-2.009 (0.546) in Scalloped hammerhead shark, 0.211-0.878 (0.501) in Blue shark, 0.121-0.993 (0.482) in Spiny dogfish, 0.243-0.658 (0.397) in Salmon shark, 0.074-1.958 (0.353) in Blacktip shark, 0.038-0.807 (0.302) in Southern hake, 0.099-0.511 (0.300) in Scorpion fish, and 0.037-0.133 (0.067) in Ling. The monitoring results showed that the estimated weekly intake of MeHg from sharks, Southern hake, and Ling were lower than the provisional tolerable weekly intake recommended by the Joint FAO/WHO expert committee on food additives.