• 제목/요약/키워드: Neuropathic model

Search Result 114, Processing Time 0.019 seconds

Study on the nNOS Expression in the Rat Spinal Cord of the Spinal Nerve Ligation Model with Neuropathic Pain and the Dorsal Rhizotomy (척수신경 결찰 만성통증모델 및 후신경근 절단 백서의 척수에서 Neuronal Nitric Oxide Synthase(nNOS) 발현에 관한 연구)

  • Youm, Jin Young;Kim, Youn
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.7
    • /
    • pp.877-885
    • /
    • 2000
  • Objective : The NOS inhibitors exhibit antinociceptive activity in rat model of neuropathic pain. NOS activity increases in the dorsal root ganglia(DRG) in neurop-athic pain. However, NOS activity decreases in the dorsal horn of spinal cord in the nerve injury models of neuropathic pain. To investigate whether the mechanism of decrease of NOS expression in the dorsal horn is related to a secondary effect resulting from increased NO production and likewise in the spinal DRG in the spinal nerve ligation model of neuropathic pain. Methods : We conducted behavioral tests for neuropathic pain, and nNOS immunohistochemistry and NADPH-diaphorase histochemistry after tight ligation of the 5th lumbar(L5) and 6th lumbar(L6) spinal nerves and L5 dorsal rhizotomy. Results : Typical neuropathic pain behaviors occurred 7 days after post-ligation in the neuropathic surgery group, but neuropathic pain behaviors in the dorsal rhizotomy group were absent or weak 7 days after post-operation. There was a decrease in the number of nNOS immunoreactive dorsal horn neurons on the both side(especially ipsilateral side) 7 days after post-ligation. The number of nNOS immunoreactive neurons in both side of the dorsal horn was not decreased 7 days after L5 dorsal rhizotomy. Conclusion : These data indicate that the changes in the injured DRG is essential for development and maintenance of neuropathic pain, and mechanism of decrease of nNOS expression in the dorsal horn is a secondary effect against the changes in the DRG including increased NO production in the spinal nerve ligation model of neuropathic pain.

  • PDF

Effects of NO Synthase Inhibitor on Responsiveness of Dorsal Horn Neurons in Neuropathic Pain Animal Model (신경병성 통증모델쥐에서 산화질소합성효소 억제제가 척수후각세포의 활성도에 미치는 영향)

  • Leem, Joong-Woo;Gwak, Young-Seob;Chung, Seung-Soo;Lee, Kyu-Rae;Yoon, Duck-Mi;Nam, Taick-Sang
    • The Korean Journal of Pain
    • /
    • v.13 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • Background: Partial nerve injury to a peripheral nerve may induce the development of neuropathic pain which is characterized by symptoms such as spontaneous burning pain, allodynia and hyperalgesia. Though underlying mechanism has not fully understood, sensitization of dorsal horn neurons may contribute to generate such symptoms. Nitric oxide acts as an inter- and intracellular messenger in the nervous system and is produced from L-arginine by nitric oxide synthase (NOS). Evidence is accumulating which indicate that nitric oxide may mediate nociceptive information transmission. Recently, it has been reported that NOS inhibitor suppresses neuropathic pain behavior in an neuropathic pain animal model. This study was conducted to determine whether nitric oxide could be involved in the sensitization of dorsal horn neurons in neuropathic animal model. Methods: Neuropathic animal model was made by tightly ligating the left L5 and L6 spinal nerves and we examined the effects of iontophoretically applied NOS inhibitor (L-NAME) on the dorsal horn neuron's responses to mechanical stimuli within the receptive fields. Results: In normal animals, NOS inhibitor (L-NAME) specifically suppressed the responses to the noxious mechanical stimuli. In neuropathic animals, the dorsal horn neuron's responses to mechanical stimuli were enhanced and NOS inhibitor suppressed the dorsal horn neuron's enhanced responses to non-noxious stimuli as well as those to noxious ones. Conclusions: These results suggest that nitric oxide may mediate nociceptive transmission in normal animal and also mediate sensitization of dorsal horn neurons in neuropathic pain state.

  • PDF

Pharmacological interactions between intrathecal pregabalin plus tianeptine or clopidogrel in a rat model of neuropathic pain

  • Lee, Hyung Gon;Kim, Yeo Ok;Choi, Jeong Il;Han, Xue Hao;Shin, Yang Un;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.35 no.1
    • /
    • pp.59-65
    • /
    • 2022
  • Background: There is still unmet need in treating neuropathic pain and increasing awareness regarding the use of drug combinations to increase the effectiveness of treatment and reduce adverse effects in patients with neuropathic pain. Methods: This study was performed to determine the individual and combined effects of pregabalin, tianeptine, and clopidogrel in a rat model of neuropathic pain. The model was created by ligation of the L5-L6 spinal nerve in male Sprague-Dawley rats; mechanical allodynia was confirmed using von Frey filaments. Drugs were administered to the intrathecal space and mechanical allodynia was assessed; drug interactions were estimated by isobolographic or fixed-dose analyses. Results: Intrathecal pregabalin and tianeptine increased the mechanical withdrawal threshold in a dose-dependent manner, but intrathecal clopidogrel had little effect on the mechanical withdrawal threshold. An additive effect was noted between pregabalin and tianeptine, but not between pregabalin and clopidogrel. Conclusions: These findings suggest that intrathecal coadministration of pregabalin and tianeptine effectively attenuated mechanical allodynia in the rat model of neuropathic pain. Thus, pregabalin plus tianeptine may be a valid option to enhance the efficacy of neuropathic pain treatment.

Intravenous Administration of Substance P Attenuates Mechanical Allodynia Following Nerve Injury by Regulating Neuropathic Pain-Related Factors

  • Chung, Eunkyung;Yoon, Tae Gyoon;Kim, Sumin;Kang, Moonkyu;Kim, Hyun Jeong;Son, Youngsook
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.259-265
    • /
    • 2017
  • This study aimed to investigate the analgesic effect of substance P (SP) in an animal model of neuropathic pain. An experimental model of neuropathic pain, the chronic constriction injury (CCI) model, was established using ICR mice. An intravenous (i.v.) injection of SP (1 nmole/kg) was administered to the mice to examine the analgesic effects of systemic SP on neuropathic pain. Behavioral testing and immunostaining was performed following treatment of the CCI model with SP. SP attenuated mechanical allodynia in a time-dependent manner, beginning at 1 h following administration, peaking at 1 day post-injection, and decaying by 3 days post-injection. The second injection of SP also increased the threshold of mechanical allodynia, with the effects peaking on day 1 and decaying by day 3. A reduction in phospho-ERK and glial fibrillary acidic protein (GFAP) accompanied the attenuation of mechanical allodynia. We have shown for the first time that i.v. administration of substance P attenuated mechanical allodynia in the maintenance phase of neuropathic pain using von Frey's test, and simultaneously reduced levels of phospho-ERK and GFAP, which are representative biochemical markers of neuropathic pain. Importantly, glial cells in the dorsal horn of the spinal cord (L4-L5) of SP-treated CCI mice, expressed the anti-inflammatory cytokine, IL-10, which was not seen in vehicle saline-treated mice. Thus, i.v. administration of substance P may be beneficial for improving the treatment of patients with neuropathic pain, since it decreases the activity of nociceptive factors and increases the expression of anti-nociceptive factors.

The Combined Antiallodynic Effect of Gabapentin and Milnacipran in a Rat Neuropathic Pain Model (흰 쥐의 신경병증성 통증 모델에서 Gabapentin과 Milnacipran의 병용 효과)

  • Lee, Hyeon Jeong;Shin, Sang-Wook;Jang, Hee Jeong
    • The Korean Journal of Pain
    • /
    • v.20 no.1
    • /
    • pp.8-14
    • /
    • 2007
  • Background: Anticonvulsants and antidepressants are adjuvant analgesic drugs that are used widely for treating chronic neuropathic pain syndromes. The combined analgesic effect of gabapentin and milnacipran was investigated with a rat neuropathic pain model. Methods: The rat neuropathic pain model was made by ligating the spinal nerves (L5 and L6). An intrathecal catheter was inserted into the subarachnoid space. Tactile allodynia was tested with the up-down method using von Frey hair. We determined the antiallodynic effect of intraperitoneal (I.P.) and intrathecal (I.T.) gabapentin. The combined effect of I.P. gabapentin (50 mg/kg) and milnacipran (0, 10 and 30 mg/kg) was investigated. Results: Intraperitoneal and intrathecal administration of gabapentin increased the threshold for tactile allodynia (the ED50 was 60.6 mg/kg and $45.5{\mu}g$, respectively). Co-administration of I.P. milnacipran increased the antiallodynic effect of I.P. gabapentin in a dose-dependent fashion. Conclusion: The combined administration of milnacipran and gabapentin may increase the total analgesic effect during treatment of neuropathic pain.

Effect of subcutaneous treatment with human umbilical cord blood-derived multipotent stem cells on peripheral neuropathic pain in rats

  • Lee, Min Ju;Yoon, Tae Gyoon;Kang, Moonkyu;Kim, Hyun Jeong;Kang, Kyung Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.153-160
    • /
    • 2017
  • In this study, we aim to determine the in vivo effect of human umbilical cord blood-derived multipotent stem cells (hUCB-MSCs) on neuropathic pain, using three, principal peripheral neuropathic pain models. Four weeks after hUCB-MSC transplantation, we observed significant antinociceptive effect in hUCB-MSC-transplanted rats compared to that in the vehicle-treated control. Spinal cord cells positive for c-fos, CGRP, p-ERK, p-p 38, MMP-9 and MMP 2 were significantly decreased in only CCI model of hUCB-MSCs-grafted rats, while spinal cord cells positive for CGRP, p-ERK and MMP-2 significantly decreased in SNL model of hUCB-MSCs-grafted rats and spinal cord cells positive for CGRP and MMP-2 significantly decreased in SNI model of hUCB-MSCs-grafted rats, compared to the control 4 weeks or 8weeks after transplantation (p<0.05). However, cells positive for TIMP-2, an endogenous tissue inhibitor of MMP-2, were significantly increased in SNL and SNI models of hUCB-MSCs-grafted rats. Taken together, subcutaneous injection of hUCB-MSCs may have an antinociceptive effect via modulation of pain signaling during pain signal processing within the nervous system, especially for CCI model. Thus, subcutaneous administration of hUCB-MSCs might be beneficial for improving those patients suffering from neuropathic pain by decreasing neuropathic pain activation factors, while increasing neuropathic pain inhibition factor.

The Attenuation of Pain Behavior and Serum COX-2 Concentration by Curcumin in a Rat Model of Neuropathic Pain

  • Zanjani, Taraneh Moini;Ameli, Haleh;Labibi, Farzaneh;Sedaghat, Katayoun;Sabetkasaei, Masoumeh
    • The Korean Journal of Pain
    • /
    • v.27 no.3
    • /
    • pp.246-252
    • /
    • 2014
  • Background: Neuropathic pain is generally defined as a chronic pain state resulting from peripheral and/or central nerve injury. There is a lack of effective treatment for neuropathic pain, which may possibly be related to poor understanding of pathological mechanisms at the molecular level. Curcumin, a therapeutic herbal extract, has shown to be effectively capable of reducing chronic pain induced by peripheral administration of inflammatory agents such as formalin. In this study, we aimed to show the effect of curcumin on pain behavior and serum COX-2 level in a Chronic Constriction Injury (CCI) model of neuropathic pain. Methods: Wistar male rats (150-200 g, n = 8) were divided into three groups: CCI vehicle-treated, sham-operated, and CCI drug-treated group. Curcumin (12.5, 25, 50 mg/kg, IP) was injected 24 h before surgery and continued daily for 7 days post-surgery. Behavioral tests were performed once before and following the days 1, 3, 5, 7 after surgery. The serum COX-2 level was measured on day 7 after the surgery. Results: Curcumin (50 mg/kg) decreased mechanical and cold allodynia (P < 0.001) and produced a decline in serum COX-2 level (P < 0.001). Conclusions: A considerable decline in pain behavior and serum COX-2 levels was seen in rat following administration of curcumin in CCI model of neuropathic pain. High concentration of Curcumin was able to reduce the chronic neuropathic pain induced by CCI model and the serum level of COX-2.

Curcumin Attenuates Chronic Constriction Nerve Injury-Induced Neuropathic Pain in Rats (Curcumin의 신경병증성 통증 억제효과)

  • Kim, Chae-Eun;Park, Eun-Sung;Jeon, Young-Hoon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.16 no.3
    • /
    • pp.183-187
    • /
    • 2008
  • Nerve injury can lead to neuropathic pain, which is often resistant to current analgesics and interventional therapeutic methods. Extracellular signal-regulated kinase (ERK) plays important role in the induction of neuropathic pain. We explored the antinociceptive effect of curcumin and its effect on ERK in the spinal cord in the neuropathic pain model of rats induced by chronic constriction injury (CCI) of the sciatic nerve. In injured rats, mechanical allodynia, which is one of characteristics of neuropathic pain developed and the activation of ERK in spinal cord significantly increased compared with control group. However, administration of curcumin (50 mg/kg/day p.o) for 7 days started from one day before the injury prevented the development of mechanical allodynia and increase of ERK phosphorylation. These results indicate that curcumin can be a new therapeutic agent in the treatment of neuropathic pain.

The Effects of Transcutaneous Electrical Nerve Stimulation (TENS) on the Neuropathic Pain in Peripheral Nerve Injury (말초신경 손상에 의한 신경병증성 통증에 TENS가 미치는 효과)

  • Lee, Soon-Hyun;Song, Chang-Ho
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.1
    • /
    • pp.79-89
    • /
    • 2013
  • PURPOSE: To identify the effects of single trial transcutaneous electrical nerve stimulation (TENS) application on chronic neuropathic pain and the repeated TENS application to development of neuropathic pain following peripheral nerve injury. METHODS: First, 20 rats were given the median nerve ligation to induce chronic neuropathic pain. After the ligation, neuropathic pain was assessed by measuring the forepaws withdrawal threshold to von Frey filaments for 3 weeks. Afterward, rats were randomly divided into TENS group and placebo-TENS group. TENS (frequency 100Hz, pulse width $200{\mu}s$) was applied to the forearm for 20 minutes. Second, 34 rats were randomly allocated into two group after median nerve ligation: TENS group and placebo-TENS group. Both interventions were applied to the forearm for 20 minutes from 1 day to 3 weeks after injury. Neuropathic pain to mechanical was measured on each rat for 3 weeks. RESULTS: Exeprimental rats showed a clear neuropathic pain-like behaviors, such as reduced forepaw withdrawal threshold to mechanical stimulation for 3 weeks, after median nerve ligation. And, TENS decreased effectively the chronic neuropathic pain originated from median nerve injury. TENS also diminished the development of neuropathic pain after nerve injury. CONCLUSION: Our animal model studying for neuropathic pain following median nerve injury may be useful to investigate peripheral neuropathic pain in human. Also, TENS may be used to mediate chronic neuropathic pain and to prevent the development of neuropathic pain following median nerve injury.

Effects of Bee Venom Acupuncture Injected at Hwando(GB30) on Neuropathic Pain in Rats (환도혈(GB30) 봉독 약침 자극이 백서의 신경병리성 동통 억제에 미치는 영향)

  • Youn, Dae-Hwan;Na, Chang-Su;Yoon, Yeo-Choong;Lee, Dong-Hyun
    • Journal of Acupuncture Research
    • /
    • v.22 no.5
    • /
    • pp.67-77
    • /
    • 2005
  • Objectives : The purpose of this study is to examine if Bee Venom Acupuncture may be effective to the neuropathic pain(mechanical allodynia, cold allodynia) in a rat model of neuropathic pain. Methods : To produce the model of neuropathic pain, under isoflurane 2.5% anesthesia, tibial nerve and sural nerve was resected. After the neuropathic surgery, the author examined if the animals exhibited the behavioral signs of alloynia. The allodynia was assessed by stimulating the medial malleolus with von Frey filament and acetone. Three weeks after the neuropathic surgery, Bee Venom Acupuncture was injected at Hwando(GB30) one time a day for one week. After that, the author examined the withdrawl response of neuropathic rats' legs by yon Frey filament and acetone stimulation. And also the author examined c-Fos in the midbrain central gray of neuropathic rats and the change of WBC count in the blood of neuropathic rats. Results : The Bee Venom Acupuncture injected Hwando(GB30) decreased the withdrawl response of mechanical allodynia in BV-2, BV-3 group as compared with control group. The Bee Venom Acupuncture injected Hwando(GB30) decreased the withdrawl response of chemical allodynia(cold allodynia) in BV-2, BV-3 group as compared with control group. The Bee Venom Acupuncture injected Hwando(GB30) showed the significant difference between control group and BV-2 group, control group and BV-3 group in the c-Fos expression and U count. Conclusion : We have noticed that Bee Venom Acupuncture at Hwando(GB30) decreased mechanical allodynia and cold allodynia in the model of neuropathic pain compared with the control group. C-Fos expression in the central gray of that group was also decreased compared with the control group. Psin control using Bee Venom Acupuncture was accumulated as time goes by. This study can be used as a basic resource on a study and a treatment of pain.

  • PDF