• 제목/요약/키워드: Neurons

검색결과 2,001건 처리시간 0.027초

자궁과 삼음교에서 투사하는 충추신경계내 신경원의 표지영역에 관한 연구 (Central Localization of Neurons Projecting to the Uterus and Sanyinjiao(Sp6))

  • 이창현;강윤석;이광규;이상룡;육상원
    • 대한한의학회지
    • /
    • 제22권2호
    • /
    • pp.31-40
    • /
    • 2001
  • This experimental studies was to investigate location of labeled neurons in CNS following injection of pseudorabies virus(PRV), Bartha strain, into the uterus and Sanyinjiao(Sp6) of rats. After survival times of 4-5 days following the injection of PRV, the rats were perfused, and their brain and spinal cord were frozen sectioned($30\mu\textrm{m}$). These sections were stained by PRV immunohistochemical staining methods, and observed with light microscope. The results were as follows: 1. In the spinal cord, overlap areas of PRV labeled neurons projecting to uterus and Sp6 were observed in lamina VII, IX and X areas of cervical segments. In thoracic segments, overlap areas were observed in lamina IV, VII, X and intermediolateral n.. In lumbar segments, overlap area of PRV labeled neurons were observed in lamina I, V-VII, IX, X and intermediolateral n.. In sacral segments, overlap areas of PRY labeled neurons were observed in lamina N, V, VII, X and sacral parasympathetic n.. 2. In the brain, overlap areas of PR V labeled neurons projecting to the uterus and Sp6 were observed in lateral paragigantocellular n., rostroventrolateral reticular n., raphe obscurus n., raphe pallidus n., raphe magnus n., locus coeruleus n., Barrington's n., A5 cell group, central gray n., paraventricular hypothalamic n. and arcuate n. This results suggest that overlap areas of PRV labeled neurons of the spinal cord projecting to the uterus and Sp6 might be the first-order neurons related to the viscera-somatic sensory and sympathetic preganglionic neurons. PRV labeled neurons of the brain may be the second and third-order neurons response to the movement of smooth muscle of uterus. These PRV labeled neurons may be central autonomic center related to the integration and modulation of reflex control linked to the sensory and motor system monitoring the internal environment. These overlap areas of spinal cord and brainmay be related to autonomic centers related to regulation of uterus.

  • PDF

Neurogenesis and neuronal migration of dopaminergic neurons during mesencephalon development in mice

  • Kim, Mun-ki;Lee, Si-Joon;Vasudevan, Anju;Won, Chungkil
    • Journal of Biomedical and Translational Research
    • /
    • 제19권4호
    • /
    • pp.125-129
    • /
    • 2018
  • Dopaminergic neurons are one of the major neuronal components in the brain. Mesencephalon dopamine (DA) neurogenesis takes place in the ventricular zone of the floor plate, when DA progenitors divide to generate postmitotic cells. These cells migrate through the intermediate zone while they differentiate and become DA neurons on reaching the mantle zone. However, neurogenesis and neuronal migration on dopaminergic neurons remain largely unexplored in the mesencephalon development. This study presents neurogenesis and neuronal migration patterns of dopaminergic neurons during mesencephalic development of the mouse. Neurons from embryonic day (E) 10-14 were labelled by a single injection of 5-bromodeoxyuridine and immunohistochemistry was performed. The neurogenesis occurred mainly at the E10 and E11, which was uniformly distributed in the mesencephalic region, but neurons after E13 were observed only in the dorsal mesencephalon. At the postnatal day 0 (P0), E10 generated neurons were spread out uniformly in the whole mesencephalon whereas E11-originated neurons were clearly depleted in the red nucleus region. DA neurons mainly originated in the ventromedial mesencephalon at the early embryonic stage especially E10 to E11. DA neurons after E12 were only observed in the ventral mesencephalon. At E17, E10 labelled neurons were only observed in the substantia nigra (SN) region. Our study demonstrated that major neurogenesis occurred at E10 and E11. However, neuronal migration continued until neonatal period during mesencephalic development.

Responses of Inferior Olive Neurons to Stimulation of Semicircular Canals

  • Park, Sah-Hoon;Park, Jong-Seong;Lee, Min-Su;Shin, Jung-Woo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.193-197
    • /
    • 2002
  • In spite of abundant anatomical evidences for the fiber connection between vestibular nuclei and inferior olivary (IO) complex, the transmission of vestibular information through the vestibulo- olivo-cerebellar climbing fiber pathway has not been physiologically established. The aims of the present study were to investigate whether there are IO neurons specifically responding to horizontal rotation and also in which subregions of IO complex these vestibularly-activated neurons are located. The extracellular recording was made in 68 IO neurons and responses of 46 vestibularly-activated cells were analyzed. Most of the vestibularly-activated IO neurons responded to signals of vertical rotation (roll), while a small number (13/46) of recorded cells were activated by horizontal canal signal (yaw). Regardless of yaw-sensitive or roll-sensitive, vestibular IO neurons were excited, when the animal was rotated to the side contralateral to the recording side. The gain and excitation phase were very similar to otolithic or vertical-canal responses. Histologic identification of recording sites showed that most of vestibular IO neurons were located in ${\beta}$ subnucleus. Electrical stimulation of a HSC evoked an inhibitory effect on the excitability of the ipsilateral IO neurons. These results suggest that IO neurons mainly in the ${\beta}$ subnucleus receive vestibular signals from semicircular canals and otolithic organs, encode them, and transmit vestibular information to the cerebellum.

Discharge Patterns and Peripheral Nerve Inputs to Cardiovascular Neurons in the Medulla of Cats: Comparison between the lateral and medial medulla

  • Kim, Sang-Jeong;Lim, Won-Il;Park, Myoung-Kyu;Lee, Jin;Kim, Jun
    • The Korean Journal of Physiology
    • /
    • 제28권2호
    • /
    • pp.133-141
    • /
    • 1994
  • The discharge patterns and peripheral nerve inputs to cardiovascular neurons were investigated in rostral ventrolateral medulla (RVLM) and raphe nucleus of cats. The data from the two were compared to determine their roles in cardiovascular regulation and the endogenous analgesic system. Animals were anesthetized with ${\alpha}-chloralose$ and single cell activities were recorded by carbon-filament microelectrode and their relationships with cardiovascular activity were analyzed. In RVLM area, a total of thirty-three cells were identified as cardiovascular neurons. During one cardiac cycle, the mean discharge rate of the neurons was $1.96{\pm}0.29$ and the peak activity was observed 45 ms after the systolic peak of arterial blood pressure. Thirteen cells could be activated antidromically by stimulation of the the $T_2$ intermediolateral nucleus. Forty-three raphe neurons were identified as cardiovascular neurons whose mean discharge rate during one cardiac cycle was $1.02{\pm}0.12$. None of these cells could be activated antidromically. Study of the interval time histogram of RVLM neurons revealed that the time to the first peak was $128{\pm}20.0\;ms$, being shorter than the period of a cardiac cycle. The same parameter found from the raphe neurons was $481{\pm}67.2\;ms$, which was much longer than the cardiac cycle length. Of seventeen RVLM neurons examined ten received only the peripheral $A{\delta}-afferent$ inputs, whereas six RVLM neurons received both $A{\delta}-$ and C-inputs; the remaining one cell received an inhibitory peripheral C-input. In contrast, nine of eleven raphe neurons were found to receive $A{\delta}-inputs$ only. We conclude that the main output of cardiovascular regulatory influences are mediated through the RVLM neurons. The cardiovascular neurons in the raphe nucleus appear to serve as interneurons transferring cardiovascular afferent information to the raphespinal neurons mediating the endogenous analgesic mechanisms.

  • PDF

R-type Calcium Channel Isoform in Rat Dorsal Root Ganglion Neurons

  • Fang, Zhi;Hwang, Jae-Hong;Kim, Joong-Soo;Jung, Sung-Jun;Oh, Seog-Bae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권1호
    • /
    • pp.45-49
    • /
    • 2010
  • R-type $Ca_v2.3$ high voltage-activated $Ca^{2+}$ channels in peripheral sensory neurons contribute to pain transmission. Recently we have demonstrated that, among the six $Ca_v2.3$ isoforms ($Ca_v2.3a{\sim}Ca_v2.3e$), the $Ca_v2.3e$ isoform is primarily expressed in trigeminal ganglion (TG) nociceptive neurons. In the present study, we further investigated expression patterns of $Ca_v2.3$ isoforms in the dorsal root ganglion (DRG) neurons. As in TG neurons, whole tissue RT-PCR analyses revealed the presence of two isoforms, $Ca_v2.3a$ and $Ca_v2.3e$, in DRG neurons. Single-cell RT-PCR detected the expression of $Ca_v2.3e$ mRNA in 20% (n=14/70) of DRG neurons, relative to $Ca_v2.3a$ expression in 2.8% (n=2/70) of DRG neurons. $Ca_v2.3e$ mRNA was mainly detected in small-sized neurons (n=12/14), but in only a few medium-sized neurons (n=2/14) and not in large-sized neurons, indicating the prominence of $Ca_v2.3e$ in nociceptive DRG neurons. Moreover, $Ca_v2.3e$ was preferentially expressed in tyrosine-kinase A (trkA)-positive, isolectin B4 (IB4)-negative and transient receptor potential vanilloid 1 (TRPV1)-positive neurons. These results suggest that $Ca_v2.3e$ may be the main R-type $Ca^{2+}$ channel isoform in nociceptive DRG neurons and thereby a potential target for pain treatment, not only in the trigeminal system but also in the spinal system.

Postembryonic Changes of Locustatachykinin I-immunoreactive Neurons in the Brains of the Moth Spodoptera litura

  • Kang, Hyun-O;Lee, Jeong-Oon;Lee, Bong-Hee
    • Animal cells and systems
    • /
    • 제1권3호
    • /
    • pp.475-482
    • /
    • 1997
  • The antiserum against locustatachykinin I, originally isolated from brain and retrocerebral complex of the locust Locusta migratoria, has been used to investigate changes in number, localization, and structure of locustatachykinin I-immunoreactive (LomTK I-IR) neurons in the brains of the common cutworm, Spodoptera Iitura, during postembryonic development. These neurons are found at larval, pupal, and adult stages. In the larval stages, the first instar larva shows the first appearance of about 8 LomTK I-IR neurons. These neurons gradually increase in number from the second to fourth instar larvae which have the largest number of about 92 in all postembryonic stages. Thereafter, these neurons decrease to about 28 in number in the 5-day-old pupa. However, they begin to rise again from the 7-day-old pupal stage, eventually reaching to about 90 in the l-day-old adult. The developing larval brains contain cell bodies of these neurons in most neuromeres. After the metamorphosis of larva to pupa and adult, localization of these neuronal cell bodies is confined to the specific cerebral neuromeres. The 7-day-old pupal brain shows the location of these neuronal cell bodies in pars intercerebralis, pars lateralis of protocerebrum, deutocerebrum, tritocerebrum, optic lobe-near region, and subesophageal ganglion. In the l-day-old adult, however, the brain has these cell bodies only in some neuromeres of protocerebrum, deutocerebrum, and subesophageal ganglion. Throughout the postembryonic life, changes in structure of these neurons coincide with changes in number and localization of these neurons. These findings suggest that changes in number, localization, and structure of these neurons reflect differentiation of these neurons to adult type.

  • PDF

S-Allyl-L-cysteine, a Garlic Compound, Selectively Protects Cultured Neurons from ER Stress-induced Neuronal Death

  • Ito Yoshihisa
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 2004년도 Annual Meeting of the Korean Society ofApplied Pharmacology
    • /
    • pp.124-128
    • /
    • 2004
  • We have assessed amyloid ${\beta}-peptide$ $(A{\beta})-induced$ neurotoxicity in primary neurons and organotypic hippocampal slice cultures (OHC) in rat. Exposing cultured hippocampal and cerebellar granule neurons to $A{\beta}$ resulted in a decrease of MTT reduction, and in destruction of neuronal integrity. Treatment of these neurons with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), also decreased MTT reduction in these neurons. S-allyl-L-cysteine (SAC), an active organosulfur compound in aged garlic extract, protected hippocampal but not cerebellar granule neurons against $A{\beta}$- or tunicamycin-induced toxicity. In the hippocampal neurons, protein expressions of casapse-12 and GRP 78 were significantly increased after $A{\beta}_{25-35}$ or tunicamycin treatment. The increase in the expression of caspase-12 was suppressed by simultaneously adding $1{\mu}M$ SAC in these neurons. In contrast, in the cerebellar granule neurons, the expression of caspase-12 was extremely lower than that in the hippocampal neurons, and an increase in the expression by $A{\beta}_{25-35}$ or tunicamycin was not detected. In OHC, ibotenic acid (IBO), a NMDA receptor agonist, induced concentration-dependent neuronal death. When $A{\beta}$ was combined with IBO, there was more intense cell death than with IBO alone. SAC protected neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by IBO in combination with $A{\beta}$, although there was no change in the CA1 area. Although protein expression of casapse-12 in the CA3 area and the DG was significantly increased after the simultaneous treatment of AI3 and IBO, no increase in the expression was observed in the CA1 area. These results suggest that SAC could protect against the neuronal cell death induced by the activation of caspase-12 in primary cultures and OHC. It is also suggested that multiple mechanisms may be involved in neuronal death induced by AI3 and AI3 in combination with IBO.

  • PDF

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han;Eun-Hye Lee;Sang-Mi Kim;Chang-Hwan Park
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.264-275
    • /
    • 2023
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

배양된 해마 신경세포의 성장에 대한 납의 영향

  • 김율아;김종곤;김용식;김영희;송동근
    • Toxicological Research
    • /
    • 제9권2호
    • /
    • pp.207-215
    • /
    • 1993
  • Lead is an environmental toxicant that causes a marked deficit in cognative development in infants and children. Damage to the hippocampus has been linked to the lead-induced deficit in the learning process. The present study examined the effects of lead on the development of hippocampal neurons in vitro. Hippocampal neurons were incubated with various concentrations in lead acetate (1nM to 30 nM) for 72 hrs from 4 h after plating, and the percentage of living neurons bearing neurites, neurite outgrowth and migration of multipolar neurons in culture were determined.

  • PDF

Neuronal Activity of the Vestibular Nuclei Following Acute Hypotension in Rats

  • Park, Byung-Rim;Kim, Min-Sun;Baik, Kum-Hyun;Lee, Moon-Young;Choi, Myung-Ae;Lee, Jae-Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제6권4호
    • /
    • pp.199-205
    • /
    • 2002
  • The role of peripheral vestibular receptors in acute hypotension was investigated in anesthetized rats. Acute hypotension was induced by either intravenous infusion of sodium nitroprusside (SNP) or by experimental hemorrhage, and electrical activity and expression of cFos-like immunoreactive (cFL) protein were measured in the medial vestibular nuclei (MVN). Blood pressure decreased proportionately to the does of intravenous SNP and to the volume of the hemorrhage. Blood pressure decreased 10, 30, 50% for the 5, 10, $15{\mu}g/kg$ SNP injection, respectively, and also decreased 30 and 50% after 1- and 2-ml blood loss, respectively, due to hemorrhage. In animals with intact labyrinths, acute hypotension induced by either intravenous infusion of SNP or hemorrhage produced different electrical activities with three different patterns in type I and II neurons of MVN. The responses of type I neurons showed excitatory in 2/3 of recorded neurons and inhibitory or no change in 1/3 of neurons, while the responses of type II neurons showed inhibitory in 2/3 of recorded neurons and excitatory or no change in 1/3 of neurons. In unilateral labyrinthectomized animals, 2/3 of type I neurons ipsilateral to the lesion showed an inhibitory response, and 2/3 of contralateral type I neurons showed an excitatory response after the induction of acute hypotension. The response patterns of type II neurons were opposite from those of the type I neurons. After 30% decrease in blood pressure, cFL protein expressed in the bilateral vestibular nuclei of control animals with intact labyrinths. Expression of cFL protein increased significantly proportionately to the reduction of blood pressure. The unilateral labyrinthectomized animals with acute hypotension produced expression of cFL neurons in contralateral vestibular nuclei to the lesion side, but not in ipsilateral vestibular nuclei. However, cFL protein was not expressed in bilateral vestibular nuclei after acute hypotension in bilateral labyrinthectomized animals. These results suggest that the peripheral vestibular receptors might play a significant role in controlling blood pressure following acute hypotension via activation of type I neurons and inhibition of type II neurons in the vestibular nuclei.