• Title/Summary/Keyword: Neuronal specification

Search Result 4, Processing Time 0.018 seconds

The CCAAT-box transcription factor, NF-Y complex, mediates the specification of the IL1 neurons in C. elegans

  • Woojung Heo;Hyeonjeong Hwang;Jimin Kim;Seung Hee Oh;Youngseok Yu;Jae-Hyung Lee;Kyuhyung Kim
    • BMB Reports
    • /
    • v.56 no.3
    • /
    • pp.153-159
    • /
    • 2023
  • Neuronal differentiation is highly coordinated through a cascade of gene expression, mediated via interactions between trans-acting transcription factors and cis-regulatory elements of their target genes. However, the mechanisms of transcriptional regulation that determine neuronal cell-fate are not fully understood. Here, we show that the nuclear transcription factor Y (NF-Y) subunit, NFYA-1, is necessary and sufficient to express the flp-3 neuropeptide gene in the IL1 neurons of C. elegans. flp-3 expression is decreased in dorsal and lateral, but not ventral IL1s of nfya-1 mutants. The expression of another terminally differentiated gene, eat-4 vesicular glutamate transporter, is abolished, whereas the unc-8 DEG/ENaC gene and pan-neuronal genes are expressed normally in IL1s of nfya-1 mutants. nfya-1 is expressed in and acts in IL1s to regulate flp-3 and eat-4 expression. Ectopic expression of NFYA-1 drives the expression of flp-3 gene in other cell-types. Promoter analysis of IL1-expressed genes results in the identification of several cis-regulatory motifs which are necessary for IL1 expression, including a putative CCAAT-box located in the flp-3 promoter that NFYA-1 directly interacts with. NFYA-1 and NFYA-2, together with NFYB-1 and NFYC-1, exhibit partly or fully redundant roles in the regulation of flp-3 or unc-8 expression, respectively. Taken together, our data indicate that the NF-Y complex regulates neuronal subtype-specification via regulating a set of terminal-differentiation genes.

NEUROD1 Intrinsically Initiates Differentiation of Induced Pluripotent Stem Cells into Neural Progenitor Cells

  • Choi, Won-Young;Hwang, Ji-Hyun;Cho, Ann-Na;Lee, Andrew J.;Jung, Inkyung;Cho, Seung-Woo;Kim, Lark Kyun;Kim, Young-Joon
    • Molecules and Cells
    • /
    • v.43 no.12
    • /
    • pp.1011-1022
    • /
    • 2020
  • Cell type specification is a delicate biological event in which every step is under tight regulation. From a molecular point of view, cell fate commitment begins with chromatin alteration, which kickstarts lineage-determining factors to initiate a series of genes required for cell specification. Several important neuronal differentiation factors have been identified from ectopic over-expression studies. However, there is scarce information on which DNA regions are modified during induced pluripotent stem cell (iPSC) to neuronal progenitor cell (NPC) differentiation, the cis regulatory factors that attach to these accessible regions, or the genes that are initially expressed. In this study, we identified the DNA accessible regions of iPSCs and NPCs via the Assay for Transposase-Accessible Chromatin sequencing (ATAC-seq). We identified which chromatin regions were modified after neuronal differentiation and found that the enhancer regions had more active histone modification changes than the promoters. Through motif enrichment analysis, we found that NEUROD1 controls iPSC differentiation to NPC by binding to the accessible regions of enhancers in cooperation with other factors such as the Hox proteins. Finally, by using Hi-C data, we categorized the genes that directly interacted with the enhancers under the control of NEUROD1 during iPSC to NPC differentiation.

Induction of a Neuronal Phenotype from Human Bone Marrow-Derived Mesenchymal Stem Cells

  • Oh, Soon-Yi;Park, Hwan-Woo;Cho, Jung-Sun;Jung, Hee-Kyung;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.177-183
    • /
    • 2009
  • Human mesenchymal stem cell (hMSCs) isolated from human adult bone marrow have self-renewal capacity and can differentiate into multiple cell types in vitro and in vivo. A number of studies have now demonstrated that MSCs can differentiate into various neuronal populations. Due to their autologous characteristics, replacement therapy using MSCs is considered to be safe and does not involve immunological complications. The basic helix-loop-helix (bHLH) transcription factor Olig2 is necessary for the specification of both oligodendrocytes and motor neurons during vertebrate embryogenesis. To develop an efficient method for inducing neuronal differentiation from MSCs, we attempted to optimize the culture conditions and combination with Olig2 gene overexpression. We observed neuron-like morphological changes in the hMSCs under these induction conditions and examined neuronal marker expression in these cells by RTPCR and immunocytochemistry. Our data demonstrate that the combination of Olig2 overexpression and neuron-specific conditioned medium facilitates the neuronal differentiation of hMSCs in vitro. These results will advance the development of an efficient stem cell-mediated cell therapy for human neurodegenerative diseases.

Epigallocatechin-3-gallate rescues LPS-impaired adult hippocampal neurogenesis through suppressing the TLR4-NF-κB signaling pathway in mice

  • Seong, Kyung-Joo;Lee, Hyun-Gwan;Kook, Min Suk;Ko, Hyun-Mi;Jung, Ji-Yeon;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.20 no.1
    • /
    • pp.41-51
    • /
    • 2016
  • Adult hippocampal dentate granule neurons are generated from neural stem cells (NSCs) in the mammalian brain, and the fate specification of adult NSCs is precisely controlled by the local niches and environment, such as the subventricular zone (SVZ), dentate gyrus (DG), and Toll-like receptors (TLRs). Epigallocatechin-3-gallate (EGCG) is the main polyphenolic flavonoid in green tea that has neuroprotective activities, but there is no clear understanding of the role of EGCG in adult neurogenesis in the DG after neuroinflammation. Here, we investigate the effect and the mechanism of EGCG on adult neurogenesis impaired by lipopolysaccharides (LPS). LPS-induced neuroinflammation inhibited adult neurogenesis by suppressing the proliferation and differentiation of neural stem cells in the DG, which was indicated by the decreased number of Bromodeoxyuridine (BrdU)-, Doublecortin (DCX)- and Neuronal Nuclei (NeuN)-positive cells. In addition, microglia were recruited with activating TLR4-NF-${\kappa}B$ signaling in the adult hippocampus by LPS injection. Treating LPS-injured mice with EGCG restored the proliferation and differentiation of NSCs in the DG, which were decreased by LPS, and EGCG treatment also ameliorated the apoptosis of NSCs. Moreover, pro-inflammatory cytokine production induced by LPS was attenuated by EGCG treatment through modulating the TLR4-NF-${\kappa}B$ pathway. These results illustrate that EGCG has a beneficial effect on impaired adult neurogenesis caused by LPS-induced neuroinflammation, and it may be applicable as a therapeutic agent against neurodegenerative disorders caused by inflammation.