• 제목/요약/키워드: Neuronal apoptosis

검색결과 294건 처리시간 0.027초

L-trans-pyrrolidine-2,4-dicarboxylate (PDC) induces Excitotoxic and Oxidative Neuronal Death in Cultured Cortical Neurons

  • Choi, Seung-Joon;Hwang, Shin-Ae;Kim, Do-Kyung;Kim, Jong-Keun
    • International Journal of Oral Biology
    • /
    • 제34권2호
    • /
    • pp.97-103
    • /
    • 2009
  • L-trans-pyrrolidine-2,4-dicarboxylate (PDC) is a potent inhibitor of glutamate transporters. In our current study, we investigated whether the neuronal death induced by PDC involves mechanisms other than excitotoxicity in mixed mouse cortical cultures. Cortical cultures at 13-14 days in vitro were used and cell death was assessed by measuring the lactate dehydrogenase efflux into bathing media. Glutamate and PDC both induced neuronal death in a concentration-dependent manner but the neurotoxic effects of glutamate were found to be more potent than those of PDC. Treatment with 10, 100 and 200 ${\mu}$M PDC equally potentiated 50 ${\mu}$M glutamate-induced neuronal death. The neuronal death induced by 75 ${\mu}$M glutamate was almost abolished by treatment with the NMDA antagonists, MK-801 and AP-5, but was unaffected by NBQX (an AMPA antagonist), trolox (antioxidant), BDNF or ZVAD-FMK (a pan-caspase inhibitor). However, the neuronal death induced by 200 ${\mu}$M PDC was partially but significantly attenuated by single treatments with MK-801, AP-5, trolox, BDNF or ZVAD-FMK but not NBQX. Combined treatments with MK-801 plus trolox, MK-801 plus ZVAD-FMK or MK-801 plus BDNF almost abolished neuronal death, whereas combined treatments with trolox plus ZVADFMK, trolox plus BDNF or ZVAD-FMK plus BDNF did not enhance the inhibitory action of any single treatment with these drugs. These results demonstrate that the neuronal death induced by PDC involves not only in the excitotoxicity induced by the accumulation of glutamate but also the oxidative stress induced by free radical generation. This suggests that apoptotic neuronal death plays a role in PDCinduced oxidative neuronal injury.

Neuroprotective effect of Aster yomena (Kitam.) Honda against hydrogen peroxide-induced oxidative stress in SH-SY5Y cells

  • Kim, Min Jeong;Kim, Ji Hyun;Lee, Sanghyun;Cho, Eun Ju;Kim, Hyun Young
    • Journal of Applied Biological Chemistry
    • /
    • 제63권3호
    • /
    • pp.283-290
    • /
    • 2020
  • Oxidative stress is one of the contributors of neurodegenerative disorders including Alzheimer's disease. According to previous studies, Aster yomena (Kitam.) Honda (AY) possesses variable pharmacological activities including anti-coagulant and anti-obesity effect. In this study, we aimed to determine the neuroprotective effect of ethyl acetate fraction from Aster yomena (Kitam.) Honda (EFAY) against oxidative stress. Therefore, we carried out 3-(4,5-dimethylthiazol-2-yl)-2,3-diphenyl tetrazolium bromide, lactate dehydrogenase (LDH), and 2',7'-dichlorofluorescin diacetate assays in SH-SY5Y neuronal cells treated with hydrogen peroxide (H2O2). H2O2-treated control cells exhibited reduced viability of cells, and increased LDH release and reactive oxygen species (ROS) production compared to normal cells. However, treatment with EFAY restored the cell viability and inhibited LDH release and ROS production. To investigate the underlying mechanisms by which EFAY attenuated neuronal oxidative damage, we measured protein expressions using Western blot analysis. Consequently, it was observed that EFAY down-regulated cyclooxygenase-2 and interleukin-1β protein expressions in H2O2-treated SH-SY5Y cells that mediated inflammatory reaction. In addition, apoptosis-related proteins including B-cell lymphoma-2-associated X protein/B-cell lymphoma-2 ratio, cleaved caspase-9, and cleaved-poly (ADP-ribose) polymerase protein expressions were suppressed when H2O2-treated cells were exposed to EFAY. Our results indicate that EFAY ameliorated H2O2-induced neuronal damage by regulating inflammation and apoptosis. Altogether, AY could be potential therapeutic agent for neurodegenerative diseases.

Genistein attenuates isoflurane-induced neurotoxicity and improves impaired spatial learning and memory by regulating cAMP/CREB and BDNF-TrkB-PI3K/Akt signaling

  • Jiang, Tao;Wang, Xiu-qin;Ding, Chuan;Du, Xue-lian
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권6호
    • /
    • pp.579-589
    • /
    • 2017
  • Anesthetics are used extensively in surgeries and related procedures to prevent pain. However, there is some concern regarding neuronal degeneration and cognitive deficits arising from regular anesthetic exposure. Recent studies have indicated that brain-derived neurotrophic factor (BDNF) and cyclic AMP response element-binding protein (CREB) are involved in learning and memory processes. Genistein, a plant-derived isoflavone, has been shown to exhibit neuroprotective effects. The present study was performed to examine the protective effect of genistein against isoflurane-induced neurotoxicity in rats. Neonatal rats were exposed to isoflurane (0.75%, 6 hours) on postnatal day 7 (P7). Separate groups of rat pups were orally administered genistein at doses of 20, 40, or 80 mg/kg body weight from P3 to P15 and then exposed to isoflurane anesthesia on P7. Neuronal apoptosis was detected by TUNEL assay and FluoroJade B staining following isoflurane exposure. Genistein significantly reduced apoptosis in the hippocampus, reduced the expression of proapoptotic factors (Bad, Bax, and cleaved caspase-3), and increased the expression of Bcl-2 and Bcl-xL. RT-PCR analysis revealed enhanced BDNF and TrkB mRNA levels. Genistein effectively upregulated cAMP levels and phosphorylation of CREB and TrkB, leading to activation of cAMP/CREB-BDNF-TrkB signaling. PI3K/Akt signaling was also significantly activated. Genistein administration improved general behavior and enhanced learning and memory in the rats. These observations suggest that genistein exerts neuroprotective effects by suppressing isoflurane-induced neuronal apoptosis and by activating cAMP/CREB-BDNF-TrkB-PI3/Akt signaling.

1-Methoxylespeflorin G11 Protects HT22 Cells from Glutamate-Induced Cell Death through Inhibition of ROS Production and Apoptosis

  • Lee, Phil Jun;Pham, Chau Ha;Thuy, Nguyen Thi Thanh;Park, Hye-Jin;Lee, Sung Hoon;Yoo, Hee Min;Cho, Namki
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권2호
    • /
    • pp.217-225
    • /
    • 2021
  • This study aimed to investigate the neuroprotective effects of 1-methoxylespeflorin G11 (MLG), a pterocarpan, against glutamate-induced neurotoxicity in neuronal HT22 hippocampal cells. The protective effects of MLG were evaluated using MTT assay and microscopic analysis. The extent of apoptosis was studied using flow cytometric analysis performed on the damaged cells probed with annexin V/propidium iodide. Moreover, mitochondrial reactive oxygen species (ROS) were assessed using flow cytometry through MitoSOXTM Red staining. To determine mitochondrial membrane potential, staining with tetramethylrhodamine and JC-1 was performed followed by flow cytometry. The results demonstrated that MLG attenuates glutamate-induced apoptosis in HT22 cells by inhibiting intracellular ROS generation and mitochondrial dysfunction. Additionally, MLG prevented glutamate-induced apoptotic pathway in HT22 cells through upregulation of Bcl-2 and downregulation of cleaved PARP-1, AIF, and phosphorylated MAPK cascades. In addition, MLG treatment induced HO-1 expression in HT22 cells. These results suggested that MLG exhibits neuroprotective effects against glutamate-induced neurotoxicity in neuronal HT22 cells by inhibiting oxidative stress and apoptosis.

($A{\beta}-oligomer$로 유도된 Neuro2A 세포주에서 용담사간탕(龍膽瀉肝湯)의 치매 억제 효과 (A Study on the Inhibitory Effect of Yeongdamsagantang on Alzheimer in $A{\beta}-oligomer-induced$ Neuro 2A Cell Lines)

  • 김해수;신유정;박종혁;김승모;백경민;박치상
    • 대한한의학회지
    • /
    • 제29권2호
    • /
    • pp.151-164
    • /
    • 2008
  • Objective: To investigate the effects of Yeongdamsagantang (YDGT) on apoptosis of neuronal cells that can result in dementia. Method: The water extract of the YDGT was tested in vitro for its beneficial effects on neuronal survival and neuroprotective functions, particularly in connection with $A{\beta}$ oligomer-related dementias. $A{\beta}$ oligomers derived from proteolytic processing of the ${\beta}-amyloid$ precursor protein (APP), including the $amyloid-{\beta}$ peptide $(A{\beta})$, play a critical role in the pathogenesis of Alzheimer's disease. A neuroblastoma cell line stably expressing an $A{\beta}$ oligomerassociated neuronal degeneration was used to investigate if YDGT inhibits formation of $A{\beta}$ oligomer. To measure the ATP generating level in mitochondrial membrane, luciferin/luciferase luminescence kit (Promega) and luminator was used, and to survey the protein's apparition, confocal microscopy was used. Result: $A{\beta}oligomer$ had a profound attenuation in the increase in CT105 expressing neuro2A cells from YDGT. Experimental evidence indicates that YDGT protected against neuronal damage from cells, but its cellular and molecular mechanisms remain unknown. We demonstrated that YDGT inhibited formation of $amyloid-{\beta}$ $(A{\beta})$ oligomers, which were the behavior, and possibly causative, features of AD. The decreased $A{\beta}$ oligomer in the presence of YDGT was observed in the conditioned medium of this $A{\beta}oligomer-secreting$ cell line under in vitro. In the cells, YDGT significantly attenuated mitochondrion-initiated apoptosis. Conclusion: (i) a direct $A{\beta}$ oligomer toxicity and the apoptosis initiated by the mitochondria; and (ii) multiple cellular and molecular neuroprotective mechanisms, including attenuation of apoptosis and direct inhibition of $A{\beta}$ oligomer aggregation, underlie the neuroprotective effects of YDGT.

  • PDF

Apoptotic Cell Death Following Traumatic Injury to the Central Nervous System

  • Springer, Joe E.
    • BMB Reports
    • /
    • 제35권1호
    • /
    • pp.94-105
    • /
    • 2002
  • Apoptotic cell death is a fundamental and highly regulated biological process in which a cell is instructed to actively participate in its own demise. This process of cellular suicide is activated by developmental and environmental cues and normally plays an essential role in eliminating superfluous, damaged, and senescent cells of many tissue types. In recent years, a number of experimental studies have provided evidence of widespread neuronal and glial apoptosis following injury to the central nervous system (CNS). These studies indicate that injury-induced apoptosis can be detected from hours to days following injury and may contribute to neurological dysfunction. Given these findings, understanding the biochemical signaling events controlling apoptosis is a first step towards developing therapeutic agents that target this cell death process. This review will focus on molecular cell death pathways that are responsible for generating the apoptotic phenotype. It will also summarize what is currently known about the apoptotic signals that are activated in the injured CNS, and what potential strategies might be pursued to reduce this cell death process as a means to promote functional recovery.

Activation of autophagy at cerebral cortex and apoptosis at brainstem are differential responses to 835 MHz RF-EMF exposure

  • Kim, Ju Hwan;Yu, Da-Hyeon;Kim, Hak Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.179-188
    • /
    • 2017
  • With the explosive increase in exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones, public concerns have grown over the last few decades with regard to the potential effects of EMF exposure on the nervous system in the brain. Many researchers have suggested that RF-EMFs can effect diverse neuronal alterations in the brain, thereby affecting neuronal functions as well as behavior. Previously, we showed that long-term exposure to 835 MHz RF-EMF induces autophagy in the mice brain. In this study, we explore whether shortterm exposure to RF-EMF leads to the autophagy pathway in the cerebral cortex and brainstem at 835 MHz with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Increased levels of autophagy genes and proteins such as LC3B-II and Beclin1 were demonstrated and the accumulation of autophagosomes and autolysosomes was observed in cortical neurons whereas apoptosis pathways were up-regulated in the brainstem but not in the cortex following 4 weeks of RF exposure. Taken together, the present study indicates that monthly exposure to RF-EMF induces autophagy in the cerebral cortex and suggests that autophagic degradation in cortical neurons against a stress of 835 MHz RF during 4 weeks could correspond to adaptation to the RF stress environment. However, activation of apoptosis rather than autophagy in the brainstem is suggesting the differential responses to the RF-EMF stresses in the brain system.

L-Glutamate에 의한 PC12 세포의 고사성 사망 (Apoptotic Process is Involved in the L-Glutamate-Induced PC12 Cell Death)

  • 성기욱;정경희;김성윤;강정혜;이상복
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.699-705
    • /
    • 1997
  • Although it is known that neuronal cell death during development occurs by apoptosis, the mechanisms underlying excitatory amino acid-induced neuronal cell death remain poorly understood. In this study we have examined the mechanism by which L-glutamate, an excitatory amino acid neurotransmitter, induces cell death in PC12 cell lines. To characterize cell death, we employed sandwich enzyme-linked immunosorbent assay(ELISA) method for cellular DNA fragmentation, DNA agarose gel electrophoresis and chromatin staining by acridine orange and ethidium bromide after treating the PC12 cells with L-glutamate. L-Glutamate caused dose-dependent cell death with a maximum at 24 hrs after the treatment. These cellular fragmentation was blocked by pretreatment of MK-801, a noncompetitive N-methyl-D-aspartic acid(NMDA) receptor antagonist, and nerve growth factor(NGF). Analysis of DNA integrity from L-glutamate-treated cells revealed cleavage of DNA into regular sized fragments, a biochemical hallmark of apoptosis. The PC12 cells that were induced to die by L-glutamate treatment exhibited classical chromatin condensation under the light microscopy after acridine orange and ethidium bromide staining. These results suggest that apoptosis is one of the key features that are involved in L-glutamate-induced excitotoxic cell death in PC12 cells, and these cell death are mediated by NMDA receptor and depend on NGF.

  • PDF

대칠기탕(大七氣湯)이 Glutamate에 의한 C6 Glial 세포의 Apoptosis에 미치는 영향 (Effects of Daechilgi-tang on Glutamate-induced Apoptosis in C6 Glial Cells)

  • 김혜윤;고석재;방창호;신선호;이동엽;이인
    • 대한한방내과학회지
    • /
    • 제31권4호
    • /
    • pp.693-705
    • /
    • 2010
  • Objectives : The water extract of Daechilgi-tang(DCGT) has traditionally been used for treatment of qi stagnation(氣滯), which is considered to be one of the important causes of neuronal disease in oriental medicine. However, little is known about the mechanism by which DCGT protects neuronal cells from brain cell damages. Methods and Results : The author tested the mechanism of the cytoprotective effect of DCGT on glutamate -stimulated rat C6 glial cells. DCGT significantly protected C6 glial cells from glutamate in MTT assay. Pre-treatment of C6 glial cells with DCGT markedly inhibited the DNA fragmentation of C6 cells induced by glutamate. Glutamate increased the generation of reactive oxygen species(ROS) and intracellular calcium level in C6 glial cells. However, pre-treatment with DCGT markedly suppressed the increase of ROS generation and intracellular calcium accumulation induced by glutamate. Among apoptosis signaling mediators, DCGT markedly increased the expression level of Bcl2 in glutamate-treated cells. It also inhibited the cleavage of caspase-3 and PARP proteins by glutamate in C6 glial cells. Conclusions : These results suggest that DCGT protects brain cells from glutamate cytotoxicity through inhibition of ROS generation and activation of apoptosis signaling pathway as well as induction of the anti-oxidant system.

Bee Venom Suppresses Ischemia-induced Increment of Apoptosis and Cell Proliferation in Hippocampal Dentate Gyrus

  • Lim Baek Vin;Lee Choong Yeol;Kang Jin Oh;Kim Chang Ju;Cho Sonhae
    • 동의생리병리학회지
    • /
    • 제18권1호
    • /
    • pp.236-242
    • /
    • 2004
  • Cerebral ischemia resulting from transient or permanent occlusion of cerebral arteries leads to neuronal cell death and eventually causes neurological impairments. Bee venom has been used for the treatment inflammatory disease. In the present study, the effects of bee venom on apoptosis and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils were investigated using immunohistochemistry for cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2), caspase-3, and 5-bromo-2'-deoxyuridine (BrdU). It was shown that apoptotic cell death and cell proliferation in the hippocampal dentate gyrus were significantly increased following transient global ischemia in gerbils and that treatment of bee venom suppressed the ischemia-induced increase in apoptosis and cell proliferation in the dentate gyrus. The present results also showed that 1 mg/kg bee-venom treatment suppressed the ischemia-induced increasing apoptosis, cell proliferation, and COX-2 expression in the dentate gyrus. It is possible that the suppression of cell proliferation is due to the reduction of apoptotic cell death by treatment of bee venom. In the present study, bee venom was shown to prosses anti-apoptotic effect in ischemic brain disease, and this protective effect of bee venom against ischemia-induced neuronal cell death is closely associated with suppression on caspase-3 expression.