• Title/Summary/Keyword: Neuronal activation

Search Result 290, Processing Time 0.028 seconds

Pain Physiology and Principles of Physical Therapy (통증 생리와 물리치료 원리)

  • Kim, Jong-Man;Ahn, Duck-Hyun
    • Physical Therapy Korea
    • /
    • v.5 no.2
    • /
    • pp.106-117
    • /
    • 1998
  • The pain is common among individuals with physical disabilities. It can interfere with therapy since patients with pain can become uncooperative and reluctant to move. This paper reviews the natural physiological mechanisms that can reduce pain perception, and considers physiological mechanisms which contribute to clinical pain by describing how the pain system changes its sensitivity depending upon the body's needs. The peripheral and central mechanisms contributing to sensitised nociceptive system are described with reference to the symptoms of clinical pain such as hyperalgesia, allodynia sopntaneous 'on-going'-projected and referred pain. It is suggested that in some chronic pain the nociceptive system maintains a state of sensitivity despite the absence of on-going tissue damage and under such circumstances the nociceptive system itself may have become dysfunctional. Such situations are often initiated by damage to nervous tissue which results in changes in the activity and organization of neuronal circuits within the central nervous system. The ability of the nociceptive system to operate in a suppressed state is also discussed with reference to pain modulation. The physical therapist can help facilitate the activation of these mechanisms through a combination of noninvasive modalities, functional activities, and the therapeutic use of self.

  • PDF

The Alpha Subunit of Go Interacts with Brain Specific High Mobility Group Box Containing Protein

  • Park, Jung-Sik;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.405-411
    • /
    • 2006
  • Heterotrimeric GTP binding proteins (G proteins) mediate signal transduction generated by neurotransmitter and hormones. Among G-proteins, Go is classified as a member of the Go/Gi family and the most abundant heterotrimeric G protein in brain. Most of the mechanistic analyses on the activation of Go indicated its action to be mediated by the $G{\beta}{\gamma}$ dimer because downstream effectors for its ${\alpha}$ subunit have not been clearly defined. To determine the downstream effectors of alpha subunits of Go ($Go{\alpha}$), we used yeast two-hybrid system to screen $Go{\alpha}$ interacting partners in cDNA library from the human brain. A brain specific high mobility group box containing protein (BHX), A possible transcription factor, was identified as a $Go{\alpha}$ interacting protein. We confirmed interaction between $Go{\alpha}$ and BHX employing in vitro affinity binding assay. Moreover, active form of $Go{\alpha}$ preferentially interacts with BHX than inactive farm. Our findings indicate that $Go{\alpha}$ could modulate gene expression via interaction with BHX during neuronal or brain development.

  • PDF

Involvement of K+-Cl--Cotransport in the Apigenin-Induced Generation of Reactive Oxygen Species in IMR-32 Human Neuroblastoma Cells

  • Kim, Min-Hoo;Jeong, Choon-Sik;Yoon, Hye-Ran;Kim, Gun-Hee;Lee, Yong-Soo
    • Biomolecules & Therapeutics
    • /
    • v.14 no.3
    • /
    • pp.137-142
    • /
    • 2006
  • Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. In this study we investigated the role of apigenin in the production of reactive oxygen species (ROS) through the modulation of activity of $K^+-Cl^-$-cotransport (KCC) in IMR-32 human neuroblastoma cells. Apigenin induced $Cl^-$-dependent $K^+$ efflux, a hallmark of KCC activity, which was markedly prevented by different kinds of KCC inhibitors (calyculin-A, genistein and $BaCl_2$). These results indicate that KCC is functionally present, and activated by apigenin in the IMR-32 cells. Treatment with apigenin also induced a sustained increase in the level of intracellular ROS. The KCC inhibitors also significantly inhibited the apigenin-induced ROS generation. Taken together, these results suggest that apigenin can modulate ROS generation through the activation of a membrane ion transporter, KCC. These results further suggest that the alteration of KCC activity may play a role in the mechanism of degenerative diseases and/or carcinogenesis in neuronal tissues through the regulation of ROS production.

Ryanodine Receptor-mediated Calcium Release Regulates Neuronal Excitability in Rat Spinal Substantia Gelatinosa Neurons

  • Park, Areum;Chun, Sang Woo
    • International Journal of Oral Biology
    • /
    • v.40 no.4
    • /
    • pp.211-216
    • /
    • 2015
  • Nitric Oxide (NO) is an important signaling molecule in the nociceptive process. Our previous study suggested that high concentrations of sodium nitroprusside (SNP), a NO donor, induce a membrane hyperpolarization and outward current through large conductances calcium-activated potassium ($BK_{ca}$) channels in substantia gelatinosa (SG) neurons. In this study, patch clamp recording in spinal slices was used to investigate the sources of $Ca^{2+}$ that induces $Ca^{2+}$-activated potassium currents. Application of SNP induced a membrane hyperpolarization, which was significantly inhibited by hemoglobin and 2-(4-carboxyphenyl) -4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (c-PTIO), NO scavengers. SNP-induced hyperpolarization was decreased in the presence of charybdotoxin, a selective $BK_{Ca}$ channel blocker. In addition, SNP-induced response was significantly blocked by pretreatment of thapsigargin which can remove $Ca^{2+}$ in endoplasmic reticulum, and decreased by pretreatment of dentrolene, a ryanodine receptors (RyR) blocker. These data suggested that NO induces a membrane hyperpolarization through $BK_{ca}$ channels, which are activated by intracellular $Ca^{2+}$ increase via activation of RyR of $Ca^{2+}$ stores.

Analysis of temperature-dependent abnormal bursting patterns of neurons in Aplysia

  • Hyun, Nam Gyu;Hyun, Kwangho;Oh, Saecheol;Lee, Kyungmin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.349-362
    • /
    • 2020
  • Temperature affects the firing pattern and electrical activity of neurons in animals, eliciting diverse responses depending on neuronal cell type. However, the mechanisms underlying such diverse responses are not well understood. In the present study, we performed in vitro recording of abdominal ganglia cells of Aplysia juliana, and analyzed their burst firing patterns. We identified atypical bursting patterns dependent on temperature that were totally different from classical bursting patterns observed in R15 neurons of A. juliana. We classified these abnormal bursting patterns into type 1 and type 2; type 1 abnormal single bursts are composed of two kinds of spikes with a long interspike interval (ISI) followed by short ISI regular firing, while type 2 abnormal single bursts are composed of complex multiplets. To investigate the mechanism underlying the temperature dependence of abnormal bursting, we employed simulations using a modified Plant model and determined that the temperature dependence of type 2 abnormal bursting is related to temperature-dependent scaling factors and activation or inactivation of potassium or sodium channels.

The Neuroprotective Mechanism of Sunghyangjunggisan Water Extracts on Apoptosis of PC 12 Cell (PC 12 세포의 Apoptosis에 대한 성향정기산의 방어효과 및 작용기전 연구)

  • 최철원;이인;이기상;조남수;문병순
    • The Journal of Korean Medicine
    • /
    • v.23 no.1
    • /
    • pp.50-60
    • /
    • 2002
  • Objectives: Sunghyangjunggisan (SHJS) is a commonly prescribed drug with a wide neuropharmacological spectrum. The water extracts of SHJS were found to be protective against neurotoxicity elicited by deprivation of serum and glucose. Methods: The morphological examination and Hoechst staining of nucleus also clearly showed that the extracts attenuated the cell shrinkage, membrane blebbing, representing typical neuronal apoptotic phenomena and nucleosome-sized fragmentation under the microscope in PC 12 rat pheochromocytoma cells. Results: Activation of protein kinase A (PKA) with dibutyl-cAMP and forskolin also protected during glucose deprivation, although it was not additive with the effect provided by phorbol ester. Interestingly, treatment with the protein kinase A inhibitor, KT5720, was not neuroprotective in the presence of SHJS. Electrophoretic mobility shift assays were used to characterize the neuroprotective binding of nuclear proteins to consensus sequences for AP-l, nuclear factor kappa B ($NF-{\kappa}B$) after glucose deprivation. When PC 12 cells are induced to undergo apoptosis by serum deprivation, AP-l and $NF-{\kappa}B$ DNA binding activity transiently increases to a slight degree. This stimulation is blocked by the water extracts of SHJS. The site of action of the drugs appeared to involve specific inhibition of AP-1 and nuclear factor kB binding activity. Conclusions: Taken together, these results suggested the possibility that the extracts of SHJS might provide a neurotrophic-like activity in PC 12 cells.

  • PDF

Role of $K^+$-$Cl^-$-cotransporter in the Apigenin-induced Stimulation of Melanogenesis in B16 Melanoma Cells (B16 흑색종세포에서 아피제닌에 의한 멜라닌 합성 촉진효과에 미치는 칼륨-염소이온수송체의 역할)

  • Lee, Yong-Soo
    • YAKHAK HOEJI
    • /
    • v.52 no.6
    • /
    • pp.500-506
    • /
    • 2008
  • Apigenin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. In this study we found that apigenin stimulated melanin synthesis in a dose-dependent manner in B16 murine melanoma cells. Since in our previous study $K^+$-$Cl^-$-cotransport (KCC) has been shown to mediate the mechanism of action of apigenin in neuronal cells, we further investigated the role of KCC in the melanogenesis-stimulating effect of apigenin in B16 cells. At nontoxic concentrations apigenin induced $Cl^-$-dependent $K^+$ efflux, a hallmark of KCC activity, which was markedly prevented by a specific KCC inhibitor R-(+)-[(2-n-butyl-6,7-dichloro-2-cyclopentyl-2,3-dihydro-1-oxo-1H-inden-5-yl)oxy]acetic acid (DIOA). These results indicate that KCC is functionally present, and activated by apigenin in the B16 cells. In addition, the apigenin-induced stimulation of melanogenesis was also significantly inhibited by DIOA. NEthylmaleimide (NEM), a known KCC activator, induced $Cl^-$ efflux and stimulated melanogenesis in a concentration-dependent fashion. Both effects of NEM were significantly inhibited by DIOA. Taken together, these results suggest that apigenin can modulate melanogenesis through the activation of a membrane ion transporter, KCC in B16 cells. These results further suggest that apigenin may be a good candidate in the therapeutic strategy for hypopigmentation disorders, such as vitiligo.

Role of nociceptin/orphanin FQ and nociceptin opioid peptide receptor in depression and antidepressant effects of nociceptin opioid peptide receptor antagonists

  • Park, Jong Yung;Chae, Suji;Kim, Chang Seop;Kim, Yoon Jae;Yi, Hyun Joo;Han, Eunjoo;Joo, Youngshin;Hong, Surim;Yun, Jae Won;Kim, Hyojung;Shin, Kyung Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.427-448
    • /
    • 2019
  • Nociceptin/orphanin FQ (N/OFQ) and its receptor, nociceptin opioid peptide (NOP) receptor, are localized in brain areas implicated in depression including the amygdala, bed nucleus of the stria terminalis, habenula, and monoaminergic nuclei in the brain stem. N/OFQ inhibits neuronal excitability of monoaminergic neurons and monoamine release from their terminals by activation of G protein-coupled inwardly rectifying $K^+$ channels and inhibition of voltage sensitive calcium channels, respectively. Therefore, NOP receptor antagonists have been proposed as a potential antidepressant. Indeed, mounting evidence shows that NOP receptor antagonists have antidepressant-like effects in various preclinical animal models of depression, and recent clinical studies again confirmed the idea that blockade of NOP receptor signaling could provide a novel strategy for the treatment of depression. In this review, we describe the pharmacological effects of N/OFQ in relation to depression and explore the possible mechanism of NOP receptor antagonists as potential antidepressants.

Neuroprotective Effects of 6-Shogaol and Its Metabolite, 6-Paradol, in a Mouse Model of Multiple Sclerosis

  • Sapkota, Arjun;Park, Se Jin;Choi, Ji Woong
    • Biomolecules & Therapeutics
    • /
    • v.27 no.2
    • /
    • pp.152-159
    • /
    • 2019
  • Multiple sclerosis (MS) is an autoimmune disease characterized by progressive neuronal loss, neuroinflammation, axonal degeneration, and demyelination. Previous studies have reported that 6-shogaol, a major constituent of ginger (Zingiber officinale rhizome), and its biological metabolite, 6-paradol, have anti-inflammatory and anti-oxidative properties in the central nervous system (CNS). In the present study, we investigated whether 6-shogaol and 6-paradol could ameliorate against experimental autoimmune encephalomyelitis (EAE), a mouse model of MS elicited by myelin oligodendrocyte glycoprotein ($MOG_{35-55}$) peptide immunization with injection of pertussis toxin. Once-daily administration of 6-shogaol and 6-paradol (5 mg/kg/day, p.o.) to symptomatic EAE mice significantly alleviated clinical signs of the disease along with remyelination and reduced cell accumulation in the white matter of spinal cord. Administration of 6-shogaol and 6-paradol into EAE mice markedly reduced astrogliosis and microglial activation as key features of immune responses inside the CNS. Furthermore, administration of these two molecules significantly suppressed expression level of tumor necrosis $factor-{\alpha}$, a major proinflammatory cytokine, in EAE spinal cord. Collectively, these results demonstrate therapeutic efficacy of 6-shogaol or 6-paradol for EAE by reducing neuroinflammatory responses, further indicating the therapeutic potential of these two active ingredients of ginger for MS.

Stem-leaf saponins from Panax notoginseng counteract aberrant autophagy and apoptosis in hippocampal neurons of mice with cognitive impairment induced by sleep deprivation

  • Cao, Yin;Yang, Yingbo;Wu, Hui;Lu, Yi;Wu, Shuang;Liu, Lulu;Wang, Changhong;Huang, Fei;Shi, Hailian;Zhang, Beibei;Wu, Xiaojun;Wang, Zhengtao
    • Journal of Ginseng Research
    • /
    • v.44 no.3
    • /
    • pp.442-452
    • /
    • 2020
  • Backgroud: Sleep deprivation (SD) impairs learning and memory by inhibiting hippocampal functioning at molecular and cellular levels. Abnormal autophagy and apoptosis are closely associated with neurodegeneration in the central nervous system. This study is aimed to explore the alleviative effect and the underlying molecular mechanism of stem-leaf saponins of Panax notoginseng (SLSP) on the abnormal neuronal autophagy and apoptosis in hippocampus of mice with impaired learning and memory induced by SD. Methods: Mouse spatial learning and memory were assessed by Morris water maze test. Neuronal morphological changes were observed by Nissl staining. Autophagosome formation was examined by transmission electron microscopy, immunofluorescent staining, acridine orange staining, and transient transfection of the tf-LC3 plasmid. Apoptotic event was analyzed by flow cytometry after PI/annexin V staining. The expression or activation of autophagy and apoptosis-related proteins were detected by Western blotting assay. Results: SLSP was shown to improve the spatial learning and memory of mice after SD for 48 h, accomanied with restrained excessive autophage and apoptosis, whereas enhanced activation of phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway in hippocampal neurons. Meanwhile, it improved the aberrant autophagy and apoptosis induced by rapamycin and re-activated phosphoinositide 3-kinase/Akt/mammalian target of rapamycin signaling transduction in HT-22 cells, a hippocampal neuronal cell line. Conclusion: SLSP could alleviate cognitive impairment induced by SD, which was achieved probably through suppressing the abnormal autophagy and apoptosis of hippocampal neurons. The findings may contribute to the clinical application of SLSP in the prevention or therapy of neurological disorders associated with SD.