• 제목/요약/키워드: Neuronal ECM

검색결과 4건 처리시간 0.02초

Morphogenetic and neuronal characterization of human neuroblastoma multicellular spheroids cultured under undifferentiated and all-trans-retinoic acid-differentiated conditions

  • Jung, Gwon-Soo;Lee, Kyeong-Min;Park, Jin-Kyu;Choi, Seong-Kyoon;Jeon, Won Bae
    • BMB Reports
    • /
    • 제46권5호
    • /
    • pp.276-281
    • /
    • 2013
  • In this study, we aimed to compare the morphogenetic and neuronal characteristics between monolayer cells and spheroids. For this purpose, we established spheroid formation by growing SH-SY5Y cells on the hydrophobic surfaces of thermally-collapsed elastin-like polypeptide. After 4 days of culture, the relative proliferation of the cells within spheroids was approximately 92% of the values for monolayer cultures. As measured by quantitative assays for mRNA and protein expressions, the production of synaptophysin and neuronspecific enolase (NSE) as well as the contents of cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins are much higher in spheroids than in monolayer cells. Under the all-trans-retinoic acid (RA)-induced differentiation condition, spheroids extended neurites and further up-regulated the expression of synaptophysin, NSE, CAMs, and ECM proteins. Our data indicate that RA-differentiated SH-SY5Y neurospheroids are functionally matured neuronal architectures.

ECM 단백질이 IMR-32 및 SK-N-SH 세포주 신경축색생장에 미치는 영향 (Analyses of the Neurite Outgrowth and Signal Transduction in IMR-32 and SK-N-SH Cells by ECM Proteins)

  • 최윤정;김철우;허규정
    • 한국동물학회지
    • /
    • 제38권4호
    • /
    • pp.542-549
    • /
    • 1995
  • Extracellular matrix(ECM) 단백질이 SK-N-SH 및 IMR-32 세포주가 신경계 세포로 분화되는 데 미치는 영향을 조사하였다. Laminin과 collagen으로 도말한 배양기에서 7일간 배양했을 때 SK-N-SH세포는 잘 발달된 신경측색생장을 보였으나 IMR-32세포는 뚜렷한 형태변화를 나타내지 않았다. 왜 IMR-32세포가 ECM 단백질에 반응을 하지 않는가를 규명하기 위하여 ECM단백질에 의한 초기 신호전달기작을 두 세포주에서 분석하였다. ECM 단백질을 도말한 배양기에 세포를 깔았을 때 한시간 만에 tyrosine 인산화된 단백질이 두 세포 모두 증가함을 볼 수 있었다. 아울러 focal adhesion kinase(FAK)의 tyrosine 인산화도 두 세포주 모두에서 증가하였다. 이러한 결과는 두 세포주가 ECM 단백질에 의한 초기 신호전달체계가 정상임을 의미한다. 신경세포 분화과정에 증가한다고 알려진 Bcl-2 및 NSE의 량을 ECM 단백질 처리후 조사하였을 때 SK-N-SH 세포주는 두 단백질이 증가 했지만 IMR-32 세포주는 변화가 없었다. 이러한 결과는 IMR-32 세포주가 ECM 단백질에 반응하지 않는 것이 ECM 단백질에 의한 신호전달체계에 문제가 있다기 보다 신경계세포로 분화되는 데 필요한 유전인자의 발현조절에 문제가 있음을 시사한다.

  • PDF

Extracellular matrixes and neuroinflammation

  • Jang, Dong Gil;Sim, Hyo Jung;Song, Eun Kyung;Kwon, Taejoon;Park, Tae Joo
    • BMB Reports
    • /
    • 제53권10호
    • /
    • pp.491-499
    • /
    • 2020
  • The extracellular matrix is a critical component of every human tissue. ECM not only functions as a structural component but also regulates a variety of cellular processes such as cell migration, differentiation, proliferation, and cell death. In addition, current studies suggest that ECM is critical for the pathophysiology of various human diseases. ECM is composed of diverse components including several proteins and polysaccharide chains such as chondroitin sulfate, heparan sulfate, and hyaluronic acid. Each component of ECM exerts its own functions in cellular and pathophysiological processes. One of the interesting recent findings is that ECM is involved in inflammatory responses in various human tissues. In this review, we summarized the known functions of ECM in neuroinflammation after acute injury and chronic inflammatory diseases of the central nerve systems.

Beyond Clot Dissolution; Role of Tissue Plasminogen Activator in Central Nervous System

  • Kim, Ji-Woon;Lee, Soon-Young;Joo, So-Hyun;Song, Mi-Ryoung;Shin, Chan-Young
    • Biomolecules & Therapeutics
    • /
    • 제15권1호
    • /
    • pp.16-26
    • /
    • 2007
  • Tissue plasminogen activator (tPA) is a serine protease catalyzing the proteolytic conversion of plasminogen into plasmin, which is involved in thrombolysis. During last two decades, the role of tPA in brain physiology and pathology has been extensively investigated. tPA is expressed in brain regions such as cortex, hippocampus, amygdala and cerebellum, and major neural cell types such as neuron, astrocyte, microglia and endothelial cells express tPA in basal status. After strong neural stimulation such as seizure, tPA behaves as an immediate early gene increasing the expression level within an hour. Neural activity and/or postsynaptic stimulation increased the release of tPA from axonal terminal and presumably from dendritic compartment. Neuronal tPA regulates plastic changes in neuronal function and structure mediating key neurologic processes such as visual cortex plasticity, seizure spreading, cerebellar motor learning, long term potentiation and addictive or withdrawal behavior after morphine discontinuance. In addition to these physiological roles, tPA mediates excitotoxicity leading to the neurodegeneration in several pathological conditions including ischemic stroke. Increasing amount of evidence also suggest the role of tPA in neurodegenerative diseases such as Alzheimer's disease and multiple sclerosis even though beneficial effects was also reported in case of Alzheimer's disease based on the observation of tPA-induced degradation of $A{\beta}$ aggregates. Target proteins of tPA action include extracellular matrix protein laminin, proteoglycans and NMDA receptor. In addition, several receptors (or binding partners) for tPA has been reported such as low-density lipoprotein receptor-related protein (LRP) and annexin II, even though intracellular signaling mechanism underlying tPA action is not clear yet. Interestingly, the action of tPA comprises both proteolytic and non-proteolytic mechanism. In case of microglial activation, tPA showed non-proteolytic cytokine-like function. The search for exact target proteins and receptor molecules for tPA along with the identification of the mechanism regulating tPA expression and release in the nervous system will enable us to better understand several key neurological processes like teaming and memory as well as to obtain therapeutic tools against neurodegenerative diseases.