• Title/Summary/Keyword: Neuronal

Search Result 2,032, Processing Time 0.024 seconds

In vitro Biological Activities of Anthocyanin Crude Extracts from Black Soybean (In vitro 실험에서 검정콩 안토시아닌 조추출물의 효능 분석)

  • Lee, Hye-Jeong;Do, Wan-Nyeo;Kim, Yong-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.1
    • /
    • pp.65-69
    • /
    • 2010
  • This study was carried out to investigate the antioxidative and anti-inflammatory activity of crude anthocyanin compounds extracted from black soybean. The crude anthocyanin compounds were extracted with 80% methanol and concentrated to powder. The most abundant compound isolated from the extract was C3G(cyanidin-3-glucoside). The superoxide dismutase (SOD) assay was conducted to assess the antioxidative activity of the crude extract. SOD, which catalyzes the dismutation of the superoxide anion into hydrogen peroxide and molecular oxygen, is one of the most important antioxidative enzymes. The black soybean anthocyanin extracts inhibited more than 90% of the superoxide radical at a concentration of 0.1% and 100% at a concentration of 0.5%, indicating that this extract displayed excellent antioxidative activity. To assess the anti-inflammatory activity of the extract, a NO(Nitric oxide) production assay in RAW 264.7 cells was performed. NO is an important physiological messenger and effector molecule in many biological systems, including immunological, neuronal and cardiovascular tissues. In this assay, the anthocyanin extracts showed a high anti-inflammatory potential, where the inhibitory potency for NO production was similar to the positive control, particularly for EGCG(epigallocatechin-3-gallate), which is known to have excellent anti-inflammatory activity. Thus, it can be concluded that the anthocyanin extracts from black soybean have distinctive pharmaceutical activities and may be used as an excellent source materials to supplement the health benefits of various food products.

Evidence for the Drp1-dependent Mitochondrial Fission in the Axon of the Rat Cerebral Cortex Neurons (흰쥐 대뇌 피질 신경세포의 축삭에서 Drp1 의존적 미토콘드리아의 분열)

  • Cho, Bong-Ki;Lee, Seung-Bok;Sun, Woong;Kim, Young-Hwa
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.249-255
    • /
    • 2011
  • Neurons utilize a large quantity of energy for their survival and function, and thereby require active mitochondrial function. Mitochondrial morphology shows dynamic changes, depending on the cellular condition, and mitochondrial dynamics are required for neuronal development and function. In this study, we found that the length of mitochondria in the distal axon is significantly shorter than that of mitochondria in dendrites or proximal axons of cerebral cortical neurons, and the reason for this difference is the local fission within the axon. We also found that suppression of Drp1, a key regulator of mitochondrial fission, resulted in significant elongation of mitochondria in axons. Collectively, these results suggest that local mitochondrial fission within the axon contributes to region-dependent mitochondrial length differences in the axons of cortical neurons.

Effects of Exercise on Axonal Regeneration and Growth-associated Protein (GAP­43) Expression Following Sciatic Nerve Injury in Rats (좌골신경 손상 후 운동이 쥐의 축색 재생과 성장관련 단백질(GAP-43) 발현에 미치는 영향)

  • Seo Tae-Beom;Yoon Sung-Jin;Kim Kyung-Tae;Yoon Jae-Suk;Yoon Jin-Hwan;Park Sung-Tae;Han In-Sun;Namgung Uk
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.486-491
    • /
    • 2005
  • Physical activity can improve sensorimotor recovery after peripheral nerve injury. Growth-associated protein 43 (GAP-43) is highly correlated with neuronal development and axonal regeneration and present in large quantities in the axonal growth cone. Using immunofluorescene staining and anterograde and retorgrade techniques, we identified enhanced axonal regrowth in distal stump of the sciatic nerve 3-14 days after crush injury in rats with treadmill training. We also carried out western blot to investigate GAP-43 protein expression in injured sciatic nerve. GAP-43 protein levels were highly induced in the injured sciatic nerve 3, 7 and 14 days compared with sedentary group. Thus, the present data provide a new evidence that treadmill training promoted axonal re-growth after injury and increased GAP-43 protein levels in the regenerating nerve.

Influence of Melatonin on Reproductive Function in Male Golden Hamsters (수컷 골든 햄스터의 생식기능에 미치는 멜라토닌의 영향)

  • Choi, Don-Chan
    • Development and Reproduction
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Golden hamsters show the reproductive activity that is determined by the photoperiod (length of light per day). Photoperiod is an environmental factor that is predictable through an entire year. The hamsters are sexually active in summer during which day length exceeds night time. The critical length is at least 12.5 hours of light in a day where reproductive function is maintained. The information of photoperiod is mediated by the pineal gland because removal of pineal gland blocks the influence of photoperiod on reproductive activity. The hamsters without pineal gland maintain sexual activity and promote it in a situation that suppresses gonadal activity. The pineal gland secretes melatonin that reflects the photoperiod. The appropriate administrations of melatonin into both pineal intact and pinealectomized hamsters lead to a gonadal reression. The results suggest that melatonin constitutes a part of control mechanism whereby environmental information is transduced to neuroendocrine signal respensible for the functional integrity of the reproductive system. Despite of the intense studies, the action site of melatonin is on the whole unknown. It is mainly due to the lack of acute efffct of melatonin on the secretion of reproductive hormones. However, sexually regressed animals display the low levelsof gonadotropins and the augmentation of the hypothalamic gonadotropin-releasing hormone (GnRH) content, implying that the antigonadotropic effects either by photoperiod and/or by the treatment of melatonin are mediated by the GnRH neuronal system. The action mechanism by which melatonin exerts its effect on GnRH neuron needs to be investigated. Recent cloning of melatonin receptor will contribute to examine various and putative potencies of melatonin via its anatomical identification and the action mechanism of melatonin on target tissues at the molecular level.

  • PDF

Differentiation of Dopaminergic Neurons from Mesenchymal-Like Stem Cells Derived from Human Umbilical Cord Vein

  • Kim, Ju-Ran;Lee, Jin-Ha;Jalin, Anjela Melinda;Lee, Chae-Yeon;Kang, Ah-Reum;Do, Byung-Rok;Kim, Hea-Kwon;Kam, Kyung-Yoon;Kang, Sung-Goo
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.173-181
    • /
    • 2009
  • One of the most extensively studied populations of multipotent adult stem cells are mesenchymal stem cells (MSCs). MSCs derived from the human umbilical cord vein (HUC-MSCs) are morphologically and immunophenotypically similar to MSCs isolated from bone marrow. HUC-MSCs are multipotent stem cells, differ from hematopoietic stem cells and can be differentiated into neural cells. Since neural tissue has limited intrinsic capacity of repair after injury, the identification of alternate sources of neural stem cells has broad clinical potential. We isolated mesenchymal-like stem cells from the human umbilical cord vein, and studied transdifferentiation-promoting conditions in neural cells. Dopaminergic neuronal differentiation of HUC-MSCs was also studied. Neural differentiation was induced by adding bFGF, EGF, dimethyl sulfoxide (DMSO) and butylated hydroxyanisole (BHA) in N2 medium and N2 supplement. The immunoreactive cells for $\beta$-tubulin III, a neuron-specific marker, GFAP, an astrocyte marker, or Gal-C, an oligodendrocyte marker, were found. HUC-MSCs treated with bFGF, SHH and FGF8 were differentiated into dopaminergic neurons that were immunopositive for tyrosine hydroxylase (TH) antibody. HUC-MSCs treated with DMSO and BHA rapidly showed the morphology of multipolar neurons. Both immunocytochemistry and RT-PCR analysis indicated that the expression of a number of neural markers including NeuroD1, $\beta$-tubulin III, GFAP and nestin was markedly elevated during this acute differentiation. While the stem cell markers such as SCF, C-kit, and Stat-3 were not expressed after neural differentiation, we confirmed the differentiation of dopaminergic neurons by TH/$\beta$-tubulin III positive cells. In conclusion, HUC-MSCs can be differentiated into dopaminergic neurons and these findings suggest that HUC-MSCs are alternative cell source of therapeutic treatment for neurodegenerative diseases.

  • PDF

Preventive effects of crocin on neuronal damages induced by D-galactose through AGEs and oxidative stress in human neuroblastoma cells (SH-SY5Y)

  • Heidari, Somaye;Mehri, Soghra;Shariaty, Vahidesadat;Hosseinzadeh, Hossein
    • Journal of Pharmacopuncture
    • /
    • v.21 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Objective: D-galactose (D-gal) is well-known agent to induce aging process. In the present study, we selected crocin, the main constituent of Crocus sativus L. (saffron), against D-gal- induced cytotoxicity in human neuroblastoma SH-SY5Y cells. Methods: Pretreated cells with crocin ($25-500{\mu}M$, 24 h) were exposed to D-gal (25-400 mM, 48 h). The MTT assay was used for determination cell viability. Dichlorofluorescin diacetate assay (DCF-DA) and senescence associated ${\beta}$-galactosidase staining assay (SA-${\beta}$-gal) were used to evaluate the generation of reactive oxygen species and beta-galactosidase as an aging marker, respectively. Also advanced glycation end products (AGEs) expression which is known as the main mechanism of age-related diseases was measured by western blot analysis. Results: The findings of our study showed that treatment of cells with D-gal (25-400 mM) for 48h decreased cell viability concentration dependency. Reactive oxygen species (ROS) levels which are known as main factors in age-related diseases increased from $100{\pm}8%$ in control group to $132{\pm}22%$ in D-gal (200 mM) treated cells for 48h. The cytotoxic effects of D-gal decreased with 24h crocin pretreatment of cells. The cell viability at concentrations of $100{\mu}M$, $200{\mu}M$ and $500{\mu}M$ increased and ROS production decreased at concentrations of 200 and $500{\mu}M$ to $111.5{\pm}6%$ and $108{\pm}5%$, respectively. Also lysosomal biomarker of aging and carboxymethyl lysine (CML) expression as an AGE protein, significantly increased in D-gal 200 mM group after 48h incubation compare to control group. Pre-treatment of SHSY-5Y cells with crocin ($500{\mu}M$) before adding D-gal significantly reduced aging marker and CML formation. Conclusion: Treatment of SH-SY5Y cells with crocin before adding of D-gal restored aging effects of D-gal concentration dependency. These findings indicate that crocin has potent anti- aging effects through inhibition of AGEs and ROS production.

Effects of Chitosan on the Toxicity of Environmental Pollutants (해양바이오물질이 PCB의 독성작용에 미치는 영향)

  • Lee, Hyon-Gyo;Kim, Hae-Young;Yang, Jae-Ho
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.102-107
    • /
    • 2007
  • Environmental contamination becomes a great public concern as our society gets industrialized rapidly. The present study examine the role of chitosan in a effort to intervene the environmental pollutant-induced toxicity. PCB-induced neurotoxicity with respect to the PKC signaling was examined. Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old SD rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. PCB showed the alteration of PKC signaling pathway. The alteration was structure-dependent. Mono-ortho-substituted congeners at a high dose showed a significant increase of total PKC activity at [$^3H$]PDBu binding assay, indicating that mono-ortho-substituted congeners are more neuroactive than non-ortho-substituted congeners in neuronal cells. PKC isoforms were immunoblotted with respective monoclonal antibodies. PKC-beta II and -epsilon were activated with mono-ortho-substituted congeners exposure. The result suggests that the position with ortho has a higher potential of altering the signaling pathway. Alteration of PKC was blocked with treatment of high molecular weight of chitosan. The study demonstrated that the ortho position in PCBs are important in assessing the structure-activity relationship. The results suggest a potential use of marine bioactive materials as a means of nutritional intervention to prevent the harmful effects of pollutant-derived toxicity.

  • PDF

The Neurotransmitter Pathway of Itching (가려움증의 신경전달 경로)

  • Jo, Jeong Won;Kim, Chi-Yeon
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.600-610
    • /
    • 2017
  • It was common that the classification of itching was classified into four categories according to the neurophysiological mechanisms of pruritoceptive itching, neuropathic itching, neurogenic itching and psychogenic itching. Recently it was classified by clinical criteria. The neurotransmission pathway of itch is divided into histamine-dependent pathway and histamine-independent pathway. Different receptors and neuropeptides act on each itch mediator. Itch mediators such as histamine, BAM8-22, and chloroquine are transmitted through the histamine-dependent pathway. Cowhage spicule, protease, and TSLP (Thymic stromal lymphopoietin) have been reported to be related to the histamine-independent pathway. These itch mediators, receptors, and neuropeptides are the targets of treatment for itching. Although itching and pain are typical noxious stimuli, and in the past, it was argued that two senses were transmitted through one noxious stimulus receptor. It has recently been shown that itching and pain have an independent neurotransmitter system and both neuronal systems inhibit each other. In addition, the mutual antagonism between itching and pain is explained by various mechanisms. Recently, many new mediators and receptors are being studied. The studies on histamine 4 receptor (H4 receptor) have been actively conducted. And the H4 receptors are expressed in immune cells such as T cells. The therapeutic agent for blocking the H4 receptor can inhibit the inflammatory reaction itself, which is important for the itching and chronicization. Understanding the underlying mechanisms of itching and studying new itch mediators will lead to the development of effective therapies, and this is what I think the itching study will go on.

Neuroprotective Effect of Rice with Phellinus linteus Mycelium in HT22 Cells (상황버섯균사체 쌀의 HT22 신경세포 보호 효과)

  • Kim, Ji Hyun;Chun, Soon Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.46 no.7
    • /
    • pp.886-890
    • /
    • 2017
  • In this study, the protective effect of rice with Phellinus linteus mycelium (PLMR) against hydrogen peroxide-induced oxidative stress was assessed in a mouse hippocampal neuronal HT22 cell line through (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) salt (MTS) assay and western blot. MTS assay using HT22 cells showed that PLMR extract did not affect viability at a concentration range from 1 mg/mL to 5 mg/mL. However, at concentrations over 10 mg/mL, PLMR extract resulted in increased cell death. Cell viability of HT22 was significantly reduced by $H_2O_2$ treatment, and reduction of cell viability was efficiently restored by treatment with PLMR extract in a dose-dependent manner from 0.1 to 1 mg/mL. Cells treated with $H_2O_2$ showed increased expression of Bax, a pro-apoptotic protein, which was down-regulated by treatment with PLMR extract. On the other hand, cells treated with $H_2O_2$ resulted in reduced expression of Bcl-2, an anti-apoptotic protein, which was restored by treatment with PLMR extract. In addition, treatment with PLMR extract reduced expression of cleaved caspase 3 and PARP, which were up-regulated by $H_2O_2$ treatment. The results may suggest that treatment with PLMR extract would suppress $H_2O_2$-induced apoptosis of HT22 cells.

Effects of oropharyngeal taste stimuli in the restoration of the fasting-induced activation of the HPA axis in rats (백서에서 금식으로 인한 스트레스 대응축 활성화의 회복조절기전에서 구강인두로부터 입수되는 다양한 맛 자극의 효과)

  • Yoo, Sang-Bae;Lee, Jong-Ho;Ryu, Vitaly;Jahng, Jeong-Won
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.3
    • /
    • pp.195-204
    • /
    • 2011
  • Introduction: This study examined the regulatory mechanism underlying the meal-induced changes in the hypothalamic-pituitary-adrenal gland (HPA) axis activity. Materials and Methods: Male Sprague-Dawley rats (250-300 g) were hired for two different experiments as follows; 1) rats received either 8% sucrose or 0.2% saccharin ad libitum after 48 h of food deprivation with the gastric fistula closed (real feeding) or opened (sham feeding). 2). rats received 5 ml of intra-oral infusion with 0.2% saccharin or distilled water after 48 h of food deprivation. One hour after food access, all rats were sacrificed by a transcardiac perfusion with 4% paraformaldehyde. The brains were processed for c-Fos immunohistochemistry and the cardiac blood was collected for the plasma corticosterone assay. Results: Real feedings with sucrose or saccharin and sham feeding saccharin but not sucrose, following food deprivation decreased the plasma corticosterone level. c-Fos expression in the nucleus tractus of solitarius (NTS) of the fasted rats was increased by the consumption of sucrose but not saccharin, regardless of the feeding method. On the other hand, the consumption of sucrose or saccharin with real feeding but not the sham, induced c-Fos expression in the paraventricular nucleus (PVN) of the fasted rats. The intra-oral infusion with saccharin or water decreased the plasma corticosterone level of the fasted rats. Intra-oral water infusion increased c-Fos expression in both the PVN and NTS, but saccharin only in the NTS in the fasted rats. Conclusion: Neither restoration of the fasting-induced elevation of plasma corticosterone nor the activation of neurons in the PVN and NTS after refeeding requires the palatability of food or the post-ingestive satiety and caloric load. In addition, neuronal activation in the hypothalamic PVN may not be an implication in the restoration of the fasting-induced elevation of the plasma corticosterone by oropharyngeal stimuli of palatable food.