• 제목/요약/키워드: Neuron Cell

검색결과 386건 처리시간 0.027초

Effect of Xanthine Oxidase Inhibitor on Cerebral Hypoxia-Ischemia in Neonatal Rats (Xanthine Oxidase Inhibitor가 저산소성-허혈성 뇌손상이 유도된 신생쥐에 미치는 영향)

  • Choi, Dae-Ho;Oh, Yeon-Kyun;Park, Seung-Tak
    • Clinical and Experimental Pediatrics
    • /
    • 제45권6호
    • /
    • pp.732-742
    • /
    • 2002
  • Purpose : In order to evaluate the hypoxia-ischemia(H-I) induced neurotoxicity and the protective effect of xanthine oxidase(XO) inhibitor(allopurinol), cell number, cell viability, lactate dehydrogenase(LDH), protein synthesis(PS) and protein kinase C(PKC) activity were measured in cerebral neurons and astrocytes. Methods : Cytotoxic effect was measured by in vitro assay at 12-72 hours after H-I on cerebral neurons and astrocytes derived from 7-day old neonatal rats which were subjected to unilateral common carotid artery occlusion and exposed to hypoxic condition for 3 hours. The protective effect of XO inhibitor was examined by the cell number, cell viability, LDH and PS on 14 days after H-I with allopurinol intraperitoneal injection 15 minutes prior to H-I. In addition, the effect of allopurinol on PKC activity in hypoxic conditions was examined in neurons. Results : 72 hours from H-I, the cell numbers and viability were decreased significantly in time-dependent manner on neurons and those of astrocytes also decreased slightly, compared with control. In neonatal rats treated with H-I, the cell number, cell viability, and PS in neurons were decreased, but LDH was increased significantly compared with control. In neonatal rats pretreated with allopurinol, the cell number and viability, and PS in neurons were increased and LDH was decreased significantly compared with H-I. PKC was increased remarkably after hypoxic condition. But PKC was decreased significantly against hypoxic condition after allopurinol pretreatment. Conclusion : From these results, it is suggested that H-I is more toxic in neurons than astrocytes and allopurinol is very protective with increasing of PS, and decreasing of LDH and PKC in neurons from hypoxic-ischemic condition.

Peripheral Neuron-Organoid Interaction Induces Colonic Epithelial Differentiation via Non-Synaptic Substance P Secretion

  • Young Hyun Che;In Young Choi;Chan Eui Song;Chulsoo Park;Seung Kwon Lim;Jeong Hee Kim;Su Haeng Sung;Jae Hoon Park;Sun Lee;Yong Jun Kim
    • International Journal of Stem Cells
    • /
    • 제16권3호
    • /
    • pp.269-280
    • /
    • 2023
  • Background and Objectives: The colonic epithelial layer is a complex structure consisting of multiple cell types that regulate various aspects of colonic physiology, yet the mechanisms underlying epithelial cell differentiation during development remain unclear. Organoids have emerged as a promising model for investigating organogenesis, but achieving organ-like cell configurations within colonic organoids is challenging. Here, we investigated the biological significance of peripheral neurons in the formation of colonic organoids. Methods and Results: Colonic organoids were co-cultured with human embryonic stem cell (hESC)-derived peripheral neurons, resulting in the morphological maturation of columnar epithelial cells, as well as the presence of enterochromaffin cells. Substance P released from immature peripheral neurons played a critical role in the development of colonic epithelial cells. These findings highlight the vital role of inter-organ interactions in organoid development and provide insights into colonic epithelial cell differentiation mechanisms. Conclusions: Our results suggest that the peripheral nervous system may have a significant role in the development of colonic epithelial cells, which could have important implications for future studies of organogenesis and disease modeling.

Ultrastructural Study on Development of the Superior Cervical Ganglion of Human Fetuses (인태아 상경신경절 발육에 관한 전자현미경적 연구)

  • Kim, Dae-Young;Kim, Baik-Yoon;Yoon, Jae-Rhyong
    • Applied Microscopy
    • /
    • 제28권2호
    • /
    • pp.139-158
    • /
    • 1998
  • The development of the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm of crown-rump length (10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cell, primitive neuroblast, primitive supporting cell, and unmyelinated fibers. At 70mm fetus, the neuroblasts and their processes were ensheated by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, Nissl bodies and dense-cored vesicles. As the neuroblasts grew and differentiated dense-cored vesicles moved away from perikaryal cytoplasm into developing processes. Synaptic contacts between the cholinergic axon and dendrites of postganglionic neuron and a few axosomatic synapses were first observed at 70 mm fetus. At 90 mm fetus the superior cervical ganglion consisted of neuroblasts, satellite cells, granule-containing cells, and unmyelinated nerve fibers. The ganglion cells increased somewhat in numbers and size by 150 mm fetus. Further differentiation resulted in the formation of young ganglion cells, whose cytoplasm was densely filled with cell organelles. During next prenatal stage up to 260 mm fetus, the cytoplasm of the ganglion cells contained except for large pigment granules, all intracytoplasmic structures which were also found in mature superior cervical ganglion. A great number of synaptic contact zones between the cholinergic preganglionic axon and the dendrites of the postganglionic neuron were observed and a few axosomatic synapses were also observed. Two morphological types of the granule-containing cells in the superior cervical ganglion were first identified at 90 mm fetus. Type I granule-containing cell occurred in solitary, whereas type II tended to appeared in clusters near the blood capillaries. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma of type I granule-containing cells and preganglionic axon termials were observed. In addition, synaptic junctions between the processes of the granule- containing cells and dendrites of postganglionic neuron were also observed from 150 mm fetus onward. In conclusion, superior cervical ganglion cells and granule-containing cells arise from a common undifferentiated cell precursor of neural crest . The granule-containg cells exhibit a local modulatory feedback system in the superior cervical ganglion and nay serve as interneurons between the preganglionic and postganglionic cells.

  • PDF

Systemic and Cell-Type Specific Profiling of Molecular Changes in Parkinson's Disease

  • Lee, Yunjong
    • Interdisciplinary Bio Central
    • /
    • 제4권3호
    • /
    • pp.6.1-6.12
    • /
    • 2012
  • Parkinson's disease (PD) is a complicated neurodegenerative disorder although it is oftentimes defined by clinical motor symptoms originated from age dependent and progressive loss of dopaminergic neurons in the midbrain. The pathogenesis of PD involves dopaminergic and nondopaminergic neurons in many brain regions and the molecular mechanisms underlying the death of different cell types still remain to be elucidated. There are indications that PD causing disease processes occur in a global scale ranging from DNA to RNA, and proteins. Several PD-associated genes have been reported to play diverse roles in controlling cellular functions in different levels, such as chromatin structure, transcription, processing of mRNA, translational modulation, and posttranslational modification of proteins. The advent of quantitative high throughput screening (HTS) tools makes it possible to monitor systemic changes in DNA, RNA and proteins in PD models. Combined with dopamine neuron isolation or derivation of dopamine neurons from PD patient specific induced pluripotent stem cells (PD iPSCs), HTS techonologies will provide opportunities to draw PD causing sequences of molecular events in pathologically relevant PD samples. Here I discuss previous studies that identified molecular functions in which PD genes are involved, especially those signaling pathways that can be efficiently studied using HTS methodologies. Brief descriptions of quantitative and systemic tools looking at DNA, RNA and proteins will be followed. Finally, I will emphasize the use and potential benefits of PD iPSCs-derived dopaminergic neurons to screen signaling pathways that are initiated by PD linked gene mutations and thus causative for dopaminergic neurodegneration in PD.

Effects of Baepungtang water extract on Cultured Spinal Sensory neurons Damaged by Xanthine Oxidase/Hypoxanthine (배풍탕(排風湯) 전탕액(煎湯液)이 XO/HX에 의해 손상(損傷)된 배양(培養) 척수감각신경세포(脊髓感覺神經細胞)에 미치는 효과(效果))

  • Yu Jin-Deok;Yun Yong-Gap
    • Herbal Formula Science
    • /
    • 제8권1호
    • /
    • pp.319-328
    • /
    • 2000
  • To evaluate the effect of Baepungtang(BPT) water extract on cultured mouse spinal sensory neuron which was inhibited by xanthine oxidase(XO) and hypoxanthine(HX)-induced oxigen radicals, MTT assay, NR assay, Neurofilament enzymeimmuno assay and LDH activity assay were carried out after the cultured mouse spinal sensory neuron were preincubated with various concentrations of BPT water extract for 3 hours prior to exposure of XO/HX. The results obtained were as follows: 1. XO/HX, a oxigen radical, decreased the survival rate of the cultured mouse spinal sensory neuron cell on NR assay and MTT assay. 2. $MTT_{50}$ value and $NR_{50}$ value of XO/HX were 30 mU/ml XO/O.2 mM HX. 3. BPT water extract have efficacy of increasing neurofilament. 4. BPT water extract have efficacy of increasing LDH activity. From above the results, It is concluded that BPT has marked efficacy as a treatment for the damages caused in the XO/HX-mediated oxidative process.

  • PDF

A Study on Automatic Design of Artificial Meural Networks using Cellular Automata Techniques (샐룰라 오토마타 기법을 이용한 신경망의 자동설계에 관한 연구)

  • Lee, Dong-Wook;Sim, Kwee-Bo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • 제35S권11호
    • /
    • pp.88-95
    • /
    • 1998
  • This paper is the result of constructing information processing system such as living creatures' brain based on artificial life techniques. The living things are best information processing system in themselves. One individual is developed from a generative cell. And a species of this individual has adapted itself to the environment through evolution. In this paper, we propose a new method of designing neural networks using biological inspired developmental and evolutionary concept. Ontogeny of organism is embodied in cellular automata(CA) and phylogeny of species is realized by evolutionary algorithms(EAs). We call 'Evolving Cellular Automata Neural Systems' as ECANSI. The connection among cells is determined by the rule of cellular automata. In order to obtain the best neural networks in given environment, we evolve the arragemetn of initial cells. The cell, that is a neuron of neural networks, is modeled on chaotic neuron with firing or rest state like biological neuron. A final output of network is measured by frequency of firing state. The effectiveness of the proposed scheme is verified by applying it to Exclusive-OR and parity problem.

  • PDF

Miniature PZT actuated microdrive for chronic neural recording in small animals (신경신호 기록을 위한 PZT기반 마이크로 드라이브)

  • Park, Sang-Kyu;Park, Hyun-Jun;Park, Suk-Ho;Kim, Byung-Kyu;Shin, Hee-Sub;Lee, Suk-Chan;Kim, Hui-Su;Kim, Eun-Tai
    • Proceedings of the KIEE Conference
    • /
    • 대한전기학회 2005년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.38-40
    • /
    • 2005
  • Microdrive with high precision and light mass enough to install on mouse head was fabricated for recording the reliable signal of neuron cell to understand the brain study. The proposed microdrive has three H-form PZT actuators and its guide structure. The microdrive operation principle is based on the well known inchworm principle. The synchronization of three PZT actuators is able to produce the linear motion along the guide structure. Our proposed microdrive has a precise accuracy of about 100nm and a long stroke of about 5mm. The electrode which is used for the recording of the action potential of the neuron cell was fixed at one of PZT actuators. The proposed microdrive was suited to acquisition of signals from in vivo extra-cellular single-unit recoding. On the condition of the anesthetized mouse, the single-unit signals could be recorded by using the proposed microdrive. In addition, applying the PZT microdrive to an alert mouse, we try to implant it on a mouse brain skull to explore single neuron firing.

  • PDF

Bicuculline Methiodide (BMI) Induces Membrane Depolarization of The Trigeminal Subnucleus Caudalis Substantia Gelatinosa Neuron in Mice Via Non-$GABA_A$ Receptor-Mediated Action

  • Yin, Hua;Park, Seon-Ah;Choi, Soon-Jeong;Bhattarai, Janardhan P.;Park, Soo-Joung;Suh, Bong-Jik;Han, Seong-Kyu
    • International Journal of Oral Biology
    • /
    • 제33권4호
    • /
    • pp.217-221
    • /
    • 2008
  • Bicuculline is one of the most commonly used $GABA_A$ receptor antagonists in electrophysiological research. Because of its poor water solubility, bicuculline quaternary ammonium salts such as bicuculline methiodide (BMI) and bicuculline methbromide are preferred. However, a number of studies have shown that BMI has non-$GABA_A$ receptor-mediated effects. The substantia gelatinosa (SG) of the trigeminal subnucleus caudalis (Vc) is implicated in the processing of nociceptive signaling. In this study, we investigated whether BMI has non-GABA receptor-mediated activity in Vc SG neurons using a whole cell patch clamp technique. SG neurons were depolarized by application of BMI ($20{\mu}M$) using a high $Cl^-$ pipette solution. GABA ($30-100{\mu}M$) also induced membrane depolarization of SG neuron. Although BMI is known to be a $GABA_A$ receptor antagonist, GABA-induced membrane depolarization was enhanced by co-application with BMI. However, free base bicuculline (fBIC) and picrotoxin (PTX), a $GABA_A$ and $GABA_C$ receptor antagonist, blocked the GABA-induced response. Furthermore, BMI-induced membrane depolarization persisted in the presence of PTX or an antagonist cocktail consisting of tetrodotoxin ($Na^+$ channel blocker), AP-5 (NMDA receptor antagonist), CNQX (non-NMDA receptor antagonist), and strychnine (glycine receptor antagonist). Thus BMI induces membrane depolarization by directly acting on postsynaptic Vc SG neurons in a manner which is independent of $GABA_A$ receptors. These results suggest that other unknown mechanisms may be involved in BMI-induced membrane depolarization.

Effect of Bunsimgieumgagambang on the Stress Due to the Maternal Separation in Rats (분심기음가감방(分心氣飮加減方)이 모성분리(母性分離) stress 백서(白鼠)에 미치는 영향)

  • Kim Ki-Bong;Kim Jang-Hyun;Chang Gyu-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • 제19권5호
    • /
    • pp.1303-1310
    • /
    • 2005
  • This study was performed to investigate the effect of Bunsimgieumgagam on the stress due to the maternal separation in rat. In this study, we researched in 'the behavioral observation', 'the changes of body weight', 'quantitative analysis of the number of BrdU-positive cells per section in dentate gyrus of hippocampus', 'free radical scavenging assay' and 'MTT-based cytotoxicity assay of SK-N-SH cell line', in order to figure out the effect on which Bunsimgieumgagam has the increase of neuron in dentate gyrus of hippocampus damaged by the stress due to the maternal separation. In the behavioral Observation, Bunsimgieumgagam was also efficacious against the decline of one's behavior and anorexia derived from the stress by the maternal separation. In the change of body weight, it showed that the Bunsimgieumgagam is effective in the recovery of weight loss caused by heavy stress(p<0.05). Also, Bunsimgieumgagam had an increasing effect, which is similar to a normal state, on DG's neuron in hippocampus (P<0.001). In free radical scavenging assay, Bunsimgieumgagam had a superior free radical scavenging effect. And it showed a significant result with the high cell proliferation effect in MTT-based cytotoxicity assay(P<0.01, p<0.001) This result suggest that Bunsimgieumgagam has an anti-stress effect and a proliferation effect of neuron in dentate gyrus of hippocampus, and it shows the potential of Bunsimgieumgagam in the treatment for the various disorders derived from children's stress.