• Title/Summary/Keyword: Neuron Cell

Search Result 386, Processing Time 0.022 seconds

Establishment of the expression system of human HtrA2 in the zebrafish (Zebrafish 동물모델에서 human HtrA2의 expression system 정립에 관한 연구)

  • Cho, Sung-Won;Park, Hyo-Jin;Kim, Goo-Young;Nam, Min-Kyung;Kim, Ho-Young;Ko, In-Ho;Kim, Cheol-Hee;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.571-578
    • /
    • 2006
  • HtrA2/Omi, a mitochondrial trypsin-like serine protease, is pivotal in regulating apoptotic cell death. Several lines of recent evidence suggest that HtrA2 is associated with the pathogenesis of neurodegenerative disorders; however, the physiological function of HtrA2 still remains elusive. For studying physiological function of HtrA2 in depth, it is necessary to develop a suitable expression system in the model animal. We therefore utilized the zebrafish as a model animal to establish expression of human HtrA2 (hHtrA2) in vivo. For expression of mature HtrA2 as GFP fusion in zebrafish embryos, the HtrA2 (WT) or (S306A) cDNAs with the C-terminal GFP tag were inserted into the pCS2+ plasmid. Expression patterns of HtrA2 in HEK293 cells were first monitored by immunofluorescence staining and immunoblot assays, showing approximately 64 kDa of the HtrA2-GFP fusion proteins. Subsequently, the hHtrA2 plasmid DNA or in vitro transcribed mRNA was microinjected into zebrafish embryos. The expression patterns of HtrA2 in Zebrafish embryos were monitored by GFP fluorescence in 24 hours-post-fertilization (hpf). Although expression patterns of HtrA2-GFP in developing embryos were different between the injected DNA and mRNA, both nucleic acids revealed good expression levels to further study the physiological role of HtrA2 in vivo. This study provides a suitable condition for expressing hHtrA2 in the zebrafish embryos as well as a method for generating useful system to investigate physiological properties of the specific human genes.

Surface maker and gene expression of human adipose stromal cells growing under human serum. (인체혈청 하에서 배양한 인체지방기질줄기세포의 표면항원 및 유전자 발현)

  • Jun, Eun-Sook;Cho, Hyun-Hwa;Joo, Hye-Joon;Kim, Hoe-Kyu;Bae, Yong-Chan;Jung, Jin-Sup
    • Journal of Life Science
    • /
    • v.17 no.5 s.85
    • /
    • pp.678-686
    • /
    • 2007
  • Human mesenchymal stem cells(hMSC), that have been reported to be present in bone marrow, adipose tissues, dermis, muscles and peripheral blood, have the potential to differentiate along different lineages including those forming bone, cartilage, fat, muscle and neuron. Therefore, hMSC are attractive candidates for cell and gene therapy. The optimal conditions for hMSC expansion require medium supplemented with fetal bovine serum(FBS). Some forms of cell therapy will involve multiple doses, raising a concern over immunological reactions caused by medium-derived FBS proteins. Previously, we have shown that hADSC can be cultured in human serum(HS) during their isolation and expansion, and that they maintain their proliferative capacity and ability for multilineage differentiation and promote engraftment of peripheral blood-derived CD34 cells mobilized from bone marrow in NOD/SCID mice. In this study we determined whether hADSC grown in HS maintain surface markers expression similar with cells grown in FBS during culture expansion and compared gene expression profile by Affymetrix microarray. Flow cytometry analysis showed that HLA-DR, CD117, CD29 and CD44 expression in HS-cultured hADSC during culture expansion were similar with that in FBS-cultured cells. However, the gene expression profile in HS-cultured hADSC was significantly different from that in FBS-cultured cells. Therefore, these data indicated that HS-cultured hADSC should be used in vivo animal study of hADSC transplantation for direct extrapolation of preclinical data into clinical application.

Protective Effect of Green Tea Extract on Amyloid $\beta$ peptide-induced Neurotoxicity (아밀로이드베타 펩타이드 유도성 신경세포독성에 대한 녹차 추출물의 보호 효과)

  • Kim, Young-In;Park, Jeong-Yoon;Choi, Soo-Jung;Kim, Jae-Kyeom;Jeong, Chang-Ho;Choi, Sung-Gil;Lee, Seung-Cheol;Cho, Sung-Hwan;Heo, Ho-Jin
    • Food Science and Preservation
    • /
    • v.15 no.5
    • /
    • pp.743-748
    • /
    • 2008
  • Amyloid $\beta$ peptide ($A{\beta}$) is known to increase oxidative stress in nerve cells, leading to apoptosis that is characterized by free radical formation and lipid peroxidation. Neurodegenerative diseases such as Alzheimer's disease (AD) are characterized by large deposits of $A{\beta}$ in the brain. In our study, neuronal protective effects of green tea, along with water activity (0.813), and leaf storage periods (fresh leaf, or leaf stored for up to 4 weeks) were investigated. We measured protective effects against $A{\beta}$-induced cytotoxicity in neuron-like PC12 cells. Powdered green tea was extracted with distilled water at $70^{\circ}C$ for 5 min, and this extract was freeze-dried and stored at $-20^{\circ}C$ until use. In cell viability assays using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), the fresh extract, and that obtained after 1 week of leaf storage, showed the best protective effects against $A{\beta}$-induced neurotoxicity. As oxidative stress causes membrane breakdown, the protective effect of green tea extracts was investigated using lactate dehydrogenase (LDH) and trypan blue exclusion assays. LDH release into the medium was inhibited (by 20-25%) in all tests. In addition, all green tea extracts (fresh, or stored before extraction for up to 4 weeks) showed better cell protective effects ($93.3{\pm}1.8-96.2{\pm}2.4$) than did vitamin C ($91.0{\pm}1.6$), used as a positive control. The results suggest that effectiveness of green tea extracts falls with prolonged leaf storage.

Enhancement of Protein Aggregate Clearance in Huntington's Disease Model viaCRISPR/dCas9 Activation of NAGK and Reln Genes (CRISPR/dCas9을 통한 NAGK 및 Reln 유전자 활성화에 의한 헌팅턴병 모델에서 단백질 응집체 제거 촉진)

  • Diyah Fatimah Oktaviani;Raju Dash;Sarmin Ummey Habiba;Ho Jin Choi;Yeasmin Akter Munni;Dae-Hyun Seog;Maria Dyah Nur Meinita;Il Soo Moon
    • Journal of Life Science
    • /
    • v.34 no.9
    • /
    • pp.609-619
    • /
    • 2024
  • Neurodegenerative diseases are marked by the accumulation of toxic misfolded proteins in neurons. Therefore, strategies for the effective prevention and clearance of aggregates are crucial for therapeutic interventions. Cytoplasmic dynein plays a crucial role in the clearance of aggregates by transporting them to the cell center, where lysosomes are enriched and the aggregates undergo extensive autophagic degradation. Previously, we reported evidence for the activation of dynein by N-acetylglucosamine kinase (NAGK) and Reln. In the present study, we explored the effects of NAGK and Reln upregulation on the clearance of aggregates. To upregulate NAGK and Reln genes in HEK293T cells (a human embryonic kidney cell line), CRISPR/dCas9 activation systems (CASs) were used with specific plasmids encoding target-specific 20 nt guide RNA. The effects of this genetic modulation were analyzed in Huntington's disease cellular models, including HEK293T cells and primary mouse cortical cells, where external mutant huntingtin (mHtt, Q74) aggregates were induced. The results showed that the CAS activation of NAGK or Reln, or their combination, significantly reduced the proportion of cells with Q74 aggregates (aggresomes). This effect was reversed by Ciliobrevin D (a dynein inhibitor) and chloroquine (an autophagy inhibitor), indicating the role of dynein-mediated autophagy in aggregate clearance. These findings provide the basis for therapeutic strategies aimed at enhancing neuronal health through targeted gene activation.

Autometallography for Zinc Detection in the Central Nervous System (중추신경계통내 분포하는 Zinc의 조직화학적 동정)

  • Jo, Seung-Mook;Gorm, Danscher;Kim, Sung-Jun;Park, Seung-Kook;Kang, Tae-Cheon;Won, Moo-Ho
    • Applied Microscopy
    • /
    • v.30 no.4
    • /
    • pp.347-355
    • /
    • 2000
  • Zinc is one of the most abundant oligoelements in the living cell. It appears tightly bound to some metalloproteins and nucleic acids, loosely bound to some metallothioneins or even as free ion. Small amounts of zinc ions (in the nanomolar range) regulate a plentitude of enzymatic proteins, receptors and transcription factors, thus rolls need accurate homeostasis of zinc ions. Zinc is an essential catalytic or structural element of many proteins, and a signaling messenger that is released by neural activity at many central excitatory synapses. Growing evidences suggest that zinc may also be a key mediator and modulator of the neuronal death associated with transient global ischemia and sustained seizures, as well as perhaps other neurological disease stoles. Some neurons have developed mechanisms to accumulate zinc in specific membrane compartment ('vesicular zinc') which can be evidenced using histochemical techniques. Substances giving a bright colour or emitting fluorescence when in contact with divalent metal ions are currently used to detect them inside cells; their use leads to the so called 'direct' methods. The fixation and precipitation of metal ions as insoluble salt precipitates, their maintenance along the histological process and, finally, their demonstration after autometallographic development are essential steps for other methods, the so called 'indirect methods'. This study is a short report on the autometallograhical approaches for zinc detection in the central nervous system (CNS) by means of a modified selenium method.

  • PDF

Time Dependent Changes in Platelet-Derived Growth Factor(PDGF) and PDGF ${\alpha}$ - and ${\beta}$ - Receptors Following Gamma-Irradiation of Rat Plasma and Sciatic Nerve (감마선 조사에 따른 흰쥐의 혈장 및 좌골신경의 혈소판-유래성 성장인자(PDGF)와 PDGF ${\alpha}$ - 및 ${\beta}$ - 수용체의 시간 의존성 변화)

  • Lim, Han-Young;Nam, Sang-Yul
    • Journal of radiological science and technology
    • /
    • v.21 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • The total-bodies of 10 week-old Sprague-Dawley rats were irradiated with single doses 4.5 and 7.5 Gy, respectively. The effects on plasma and sciatic nerve platelet-derived growth factor(PDGF) concentrations and sciatic nerve PDGF ${\alpha}$ -and ${\beta}$ -receptors densities were examined up to 10 days post-treatment. There was no consistent significant variation in the plasma and sciatic nerve PDGF concentrations in time over the period of study between 4.5 and 7.5 Gy groups. Plasma PDGF concentrations were significantly reduced to 58% of control values between 5 and 10 days with 4.5 Gy and to 51% of control values as percentage of control values between 5 and 10 days with 7.5 Gy after irradiation, respectively(p<0.05). Sciatic nerve PDGF concentrations were increased to 118% of control values at 1 day with 4.5 Gy and to 130% of control values at 1 day with 7.5 Gy after irradiation, respectively(p>0.05). After irradiation, the levels of PDGF ${\alpha}$ -receptor protein density were reduced to 33% of control values at 2 days with 4.5 Gy and to 50% at 2 days with 7.5 Gy, while the levels of PDGF ${\beta}$-receptor protein density were reduced to maximally 26% of control values at 2 days with 4.5 Gy and to 27% at 2 days with 7.5 Gy, respectively, but both initial decreased levels of those were increased subsequently after 2 days following irradiation. These results suggest that the radiation-induced alteration of plasma and sciatic nerve PDGF concentrations, and sciatic nerve PDGF ${\alpha}$ -and ${\beta}$ -receptors densities may be involved in the pathogenesis of bone marrow stem cell and peripheral neuron damages.

  • PDF