• Title/Summary/Keyword: Neuron Cell

Search Result 383, Processing Time 0.025 seconds

Solution Structure of the Cytoplasmic Domain of Syndecan-3 by Two-dimensional NMR Spectroscopy

  • Yeo, In-Young;Koo, Bon-Kyung;Oh, Eok-Soo;Han, Inn-Oc;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.1013-1017
    • /
    • 2008
  • Syndecan-3 is a cell-surface heparan sulfate proteoglycan, which performs a variety of functions during cell adhension process. It is also a coreceptor for growth factor, mediating cell-cell and cell-matrix interaction. Syndecan-3 contains a cytoplasmic domain potentially associated with the cytoskeleton. Syndecan-3 is specifically expressed in neuron cell and has related to neuron cell differentiation and development of actin filament in cell migration. Syndecans each have a unique, central, and variable (V) region in their cytoplasmic domains. And that region of syndecan-3 may modulate the interactions of the conserved C1 regions of the cytoplasmic domains by tyrosine phosphorylation. Cytoplasmic domain of syndecan-3 has been synthesized for NMR structural studies. The solution structure of syndecan-3 cytoplasmic domain has been determined by two-dimensional NMR spectroscopy and simulated-annealing calculation. The cytoplasmic domain of the syndecan proteins has a tendency to form a dimmer conformation with a central cavity, however, that of syndecan-3 demonstrated a monomer conformation with a flexible region near C-terminus. The structural information might add knowledge about the structure-function relationships among syndecan proteins.

Ultrastructural Study on Development of the Superior Cervical Ganglion of Human Fetuses (인태아 상경신경절 발육에 관한 전자현미경적 연구)

  • Kim, Dae-Young
    • The Korean Journal of Pain
    • /
    • v.11 no.1
    • /
    • pp.7-22
    • /
    • 1998
  • The development of the superior cervical ganglion was studied by electron microscopic method in human fetuses ranging from 40 mm to 260 mm of crown-rump length(10 to 30 weeks of gestational age). At 40 mm fetus, the superior cervical ganglion was composed of clusters of undifferentiated cell, primitive neuroblast, primitive supporting cell, and unmyelinated fibers. At 70 mm fetus, the neuroblasts and their processes were ensheated by the bodies or processes of satellite cells. The cytoplasm of the neuroblast contained rough endoplasmic reticulum, mitochondria, Golgi complex, Nissl bodies and dense-cored vesicles. As the neuroblasts grew and differentiated dense-cored vesicles moved away from perikaryal cytoplasm into developing processes. Synaptic contacts between the cholinergic axon and dendrites of postganglionic neuron and a few axosomatic synapses were first observed at 70 mm fetus. At 90 mm fetus the superior cervical ganglion consisted of neuroblasts, satellite cells, granule-containing cells, and unmyelinated nerve fibers. The ganglion cells increased somewhat in numbers and size by 150 mm fetus. Further differentiation resulted in the formation of young ganglion cells, whose cytoplasm was densely filled with cell organelles. During next prenatal stage up to 260 mm fetus, the cytoplasm of the ganglion cells contained except for large pigment granules, all intracytoplasmic structures which were also found in mature superior cervical ganglion. A great number of synaptic contact zones between the cholinergic preganglionic axon and the dendrites of the postganglionic neuron were observed and a few axosomatic synapses were also observed. Two morphological types of the granule-containing cells in the superior cervical ganglion were first identified at 90 mm fetus. Type I granule-containing cell occurred in solitary, whereas type II tended to appeared in clusters near the blood capillaries. Synaptic contacts were first found on the solitary granule-containing cell at 150 mm fetus. Synaptic contacts between the soma of type I granule-containing cells and preganglionic axon termials were observed. In addition, synaptic junctions between the processes of the granule-containing cells and dendrites of postganglionic neuron were also observed from 150 mm fetus onward. In conclusion, superior cervical ganglion cells and granule-containing cells arise from a common undifferentiated cell precursor of neural crest. The granule-containg cells exhibit a local modulatory feedback system in the superior cervical ganglion and may serve as interneurons between the preganglionic and postganglionic cells.

  • PDF

Road Extraction by the Orientation Perception of the Isolated Connected-Components (고립 연결-성분의 방향성 인지에 의한 도로 영역 추출)

  • Lee, Woo-Beom
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • Road identification is the important task for extracting a road region from the high-resolution satellite images, when the road candidates is extracted by the pre-processing tasks using a binarization, noise removal, and color processing. Therefore, we propose a noble approach for identifying a road using the orientation-selective spatial filters, which is motivated by a computational model of neuron cells found in the primary visual cortex. In our approach, after the neuron cell typed spatial filters is applied to the isolated connected-labeling road candidate regions, proposed method identifies the region of perceiving the strong orientation feature with the real road region. To evaluate the effectiveness of the proposed method, the accuracy&error ratio in the confusion matrix was measured from road candidates including road and non-road class. As a result, the proposed method shows the more than 92% accuracy.

Physiological Fuzzy Neural Networks for Image Recognition (영상 인식을 위한 생리학적 퍼지 신경망)

  • Kim, Kwang-Baek;Moon, Yong-Eun;Park, Choong-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.81-103
    • /
    • 2005
  • The Neuron structure in a nervous system consists of inhibitory neurons and excitory neurons. Both neurons are activated by agonistic neurons and inactivated by antagonist neurons. In this paper, we proposed a physiological fuzzy neural network by analyzing the physiological neuron structure in the nervous system. The proposed structure selectively activates the neurons which go through a state of excitement caused by agonistic neurons and also transmit the signal of these neurons to the output layers. The proposed physiological fuzzy neural networks based on the nervous system consists of a input player, and the hidden layer which classifies features of learning data, and output layer. The proposed fuzzy neural network is applied to recognize bronchial squamous cell carcinoma images and car plate images. The result of the experiments shows that the learning time, the convergence, and the recognition rate of the proposed physiological fuzzy neural networks outperform the conventional neural networks.

  • PDF

Isolation of human mesenchymal stem cells from the skin and their neurogenic differentiation in vitro

  • Byun, Jun-Ho;Kang, Eun-Ju;Park, Seong-Cheol;Kang, Dong-Ho;Choi, Mun-Jeong;Rho, Gyu-Jin;Park, Bong-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.38 no.6
    • /
    • pp.343-353
    • /
    • 2012
  • Objectives: This aim of this study was to effectively isolate mesenchymal stem cells (hSMSCs) from human submandibular skin tissues (termed hSMSCs) and evaluate their characteristics. These hSMSCs were then chemically induced to the neuronal lineage and analyzed for their neurogenic characteristics in vitro. Materials and Methods: Submandibular skin tissues were harvested from four adult patients and cultured in stem cell media. Isolated hSMSCs were evaluated for their multipotency and other stem cell characteristics. These cells were differentiated into neuronal cells with a chemical induction protocol. During the neuronal induction of hSMSCs, morphological changes and the expression of neuron-specific proteins (by fluorescence-activated cell sorting [FACS]) were evaluated. Results: The hSMSCs showed plate-adherence, fibroblast-like growth, expression of the stem-cell transcription factors Oct 4 and Nanog, and positive staining for mesenchymal stem cell (MSC) marker proteins (CD29, CD44, CD90, CD105, and vimentin) and a neural precursor marker (nestin). Moreover, the hSMSCs in this study were successfully differentiated into multiple mesenchymal lineages, including osteocytes, adipocytes, and chondrocytes. Neuron-like cell morphology and various neural markers were highly visible six hours after the neuronal induction of hSMSCs, but their neuron-like characteristics disappeared over time (24-48 hrs). Interestingly, when the chemical induction medium was changed to Dulbecco's Modified Eagle Medium (DMEM) supplemented with fetal bovine serum (FBS), the differentiated cells returned to their hSMSC morphology, and their cell number increased. These results indicate that chemically induced neuron-like cells should not be considered true nerve cells. Conclusion: Isolated hSMSCs have MSC characteristics and express a neural precursor marker, suggesting that human skin is a source of stem cells. However, the in vitro chemical neuronal induction of hSMSC does not produce long-lasting nerve cells and more studies are required before their use in nerve-tissue transplants.

The Novel Approach of Gene Detection by Single-neuronal Cell Manipulation (단일 도파민뉴런을 이용한 새로운 유전자발현 검출기법)

  • Jeong, Sang-Min
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.323-327
    • /
    • 2005
  • RT-PCR is an useful method to investigate the expression of target gene as detection tools. Although RT-PCR is the powerful detection method for tissues, it was difficult to amplify the target gene product using the single cell. To clarify the expression level of the genes related to Parkinson's disease (PD), I performed the laser dissection of single cell from Substantia nigra. I examined the mRNA expression level in the dopaminergic neuron isolated from the PD patients by the single cell RT-PCR method. It is known that tyrosine hydroxylase (TH), DOPA decarboxylase (DDC) are involved in biosynthesis of the catecholamine such as dopamine. Little has been known about the gene expression features of these enzymes in single dopaminergic neuron. I could detect the specific gene products in single cell level. The different expression was observed in PD-related gene products from the single neuron of PD patients. Interestingly, TH gene expression was significantly decreased with comparing the ratio of decrease in other PD-related genes. Hence, I represented data that indicate the RT-PCR method described in this report is an effective method in detecting a specific single-cell mRNA level related with diseases.

Effects of Neurotrophic Factors on the Generation of Functional Dopamine Secretory Neurons Derived from in vitro Differentiated Human Embryonic Stem Cells (신경성장촉진 인자가 인간 배아줄기세포 유래 도파민 분비 신경세포형성에 미치는 영향)

  • Lee, Keum-Sil;Kim, Eun-Young;Shin, Hyun-Ah;Cho, Hwang-Yoon;Wang, Kyu-Chang;Kim, Yong-Sik;Lee, Hoon-Taek;Chung, Kil-Saeng;Lee, Won-Don;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.19-27
    • /
    • 2004
  • Objective: This study was to examine the in vitro neural cell differentiation patterns of human embryonic stem (hES) cells following treatment of various neurotrophic factors [basic fibroblast growth factor (bFGF), retinoic acid (RA), brain derived neurotrophic factor (BDNF) and transforming growth factor (TGF)-$\alpha$], particulary in dopaminergic neuron formation. Methods: The hES cells were induced to differentiate by bFGF and RA. Group I) In bFGF induction method, embryoid bodies (EBs, for 4 days) derived from hES were plated onto gelatin dish, selected for 8 days in ITSFn medium and expanded at the presence of bFGF (10 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14 and 21 days. Group II) For RA induction, EBs were exposed of RA ($10^{-6}M$) for 4 days and allowed to differentiate in N2 medium for 7, 14 and 21 days. Group III) To examine the effects of additional neurotrophic factors, bFGF or RA induced cells were exposed to either BDNF (10 ng/ml) or TGF-$\alpha$ (10 ng/ml) during the 21 days of final differentiation. Neuron differentiation and dopamine secretion were examined by indirect immunocytochemistry and HPLC, respectively. Results: The bFGF or RA treated hES cells were resulted in similar neural cell differentiation patterns at the terminal differentiation stage, specifically, 75% neurons and 11% glial cells. Additionally, treatment of hES cells with BDNF or TGF-$\alpha$ during the terminal differentiation stage led to significantly increased tyrosine hydroxylase (TH) expression of a dopaminergic neuron marker, compared to control (p<0.05). In contrast, no effect was observed on the rate of mature neuron (NF-200) or glutamic acid decarboxylase-positive neurons. Immunocytochemistry and HPLC analyses revealed the higher levels of TH expression (20.3%) and dopamine secretion (265.5 $\pm$ 62.8 pmol/mg) in bFGF and TGF-sequentially treated hES cells than those in $\alpha$ RA or BDNF treated hES cells. Conclusion: These results indicate that the generation of dopamine secretory neurons from in vitro differentiated hES cells can be improved by TGF-$\alpha$ addition in the bFGF induction protocol.

Involvement of MAPKs in GDNF-induced Proliferation and Migration in Hs683 Glioma Cells

  • Song, Hyun;Moon, A-Ree
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.223.2-224
    • /
    • 2003
  • Glial cell-derived neurotrophic factor (GDNF) is a potent neurotrophic factor that enhances survival of midbrain doparminergic neuron. GDNF and its receptors are widely distributed in brain and are believed to be involved in the control of neuron survival and differentiation. GDNF increased proliferation and migration of Hs683 human giloma and C6 rat giloma cells in a dose-dependent manner. (omitted)

  • PDF

Induction of a Neuronal Phenotype from Human Bone Marrow-Derived Mesenchymal Stem Cells

  • Oh, Soon-Yi;Park, Hwan-Woo;Cho, Jung-Sun;Jung, Hee-Kyung;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.177-183
    • /
    • 2009
  • Human mesenchymal stem cell (hMSCs) isolated from human adult bone marrow have self-renewal capacity and can differentiate into multiple cell types in vitro and in vivo. A number of studies have now demonstrated that MSCs can differentiate into various neuronal populations. Due to their autologous characteristics, replacement therapy using MSCs is considered to be safe and does not involve immunological complications. The basic helix-loop-helix (bHLH) transcription factor Olig2 is necessary for the specification of both oligodendrocytes and motor neurons during vertebrate embryogenesis. To develop an efficient method for inducing neuronal differentiation from MSCs, we attempted to optimize the culture conditions and combination with Olig2 gene overexpression. We observed neuron-like morphological changes in the hMSCs under these induction conditions and examined neuronal marker expression in these cells by RTPCR and immunocytochemistry. Our data demonstrate that the combination of Olig2 overexpression and neuron-specific conditioned medium facilitates the neuronal differentiation of hMSCs in vitro. These results will advance the development of an efficient stem cell-mediated cell therapy for human neurodegenerative diseases.