• Title/Summary/Keyword: Neurodegenerative disease

Search Result 494, Processing Time 0.028 seconds

Ginsenoside Rg3 from Red Ginseng Prevents Damage of Neuronal Cells through the Phosphorylation of the Cell Survival Protein Akt

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Yong-Jin;Hwang, Kwang-Woo;Lee, Seon-Gu;Yoo, Yeong-Min;Lee, Do-Ik
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.244-247
    • /
    • 2006
  • Neuronal cell death significantly contributes to neuronal loss in neurological injury and disease. Typically, neuronal loss or destruction upon exposure to neurotoxins, oxidative stress, or DNA damage causes neurodegenerative diseases such as Alzheimer's disease. In this study, we attempted to determine whether ginsenoside Rg3 from red ginseng has a neuroprotective effect via an anti-apoptotic role induced by S-nitroso-N-acetylpenicillamine (SNAP) at the molecular level. We also investigated the antioxidant effect of Rg3 using a metal-catalyzed reaction with $Cu^{2+}/H_2O_2$. Our results showed that Rg3 ($40-100\;{\mu}g/mL$) protected SK-N-MC neuroblastoma cells under cytotoxic conditions and effectively protected DNA from fragmentation. In the signal pathway, caspase-3, and poly (ADP-ribose) polymerase (PARP) were kept at an inactivated status when pretreated with Rg3 in all ranges. In particular, the important upstream p-Akt signal pathway was increased in a dose-dependent manner, which indicates that Rg3 may contribute to cell survival. We also found that oxidative stress can be mitigated by Rg3. Therefore, we have concluded that Rg3 plays a certain role in neurodegenerative pathogenesis via an anti apoptotic, antioxidative effect.

Mitophagy: Therapeutic Potentials for Liver Disease and Beyond

  • Lee, Sooyeon;Kim, Jae-Sung
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.243-250
    • /
    • 2014
  • Mitochondrial integrity is critical for maintaining proper cellular functions. A key aspect of regulating mitochondrial homeostasis is removing damaged mitochondria through autophagy, a process called mitophagy. Autophagy dysfunction in various disease states can inactivate mitophagy and cause cell death, and defects in mitophagy are becoming increasingly recognized in a wide range of diseases from liver injuries to neurodegenerative diseases. Here we highlight our current knowledge on the mechanisms of mitophagy, and discuss how alterations in mitophagy contribute to disease pathogenesis. We also discuss mitochondrial dynamics and potential interactions between mitochondrial fusion, fission and mitophagy.

A Pharmacological Advantage of Ursodeoxycholic Acid in Cytoprotection in Primary Rat Microglia

  • Joo, Seong-Soo;Hwang, Kwang-Woo;Lee, Do-Ik
    • Molecular & Cellular Toxicology
    • /
    • v.1 no.1
    • /
    • pp.40-45
    • /
    • 2005
  • Ursodeoxycholic acid (UDCA) has long been used as an adjuvant or first choice of therapy for liver disease. Commonly, UDCA has been reported to play a role in improving hyperbilirubinemia and disorder of bromsulphalein. More commonly, UDCA has been used in reducing the rate of cholesterol level in bile juice that can cause cholesterol stone. The effects on the promotion of bile acid release that leads an excretion of toxic materials and wastes produced in liver cells as well as various arrays of liver disease such as hepatitis. Other than already reported in clinical use, immunosuppressive effect has been studied, especially in transplantation. In the study, we hypothesized that UDCA might have a certain role in anti-inflammation through a preventive effect of pro-inflammatory potentials in the brain macrophages, microglia. We found that the treatment of $200\;{\mu}g/ml$ UDCA effectively suppressed the pro-inflammatory mediators (i.e. nitric oxide and interleukin-$1{\beta}$) in rat microglia compared to comparators. Interestingly, RT-PCR analysis suggested that UDCA strongly attenuated the expression of $IL-1{\beta}$ that was comparable with cyclosporine A at 48 h incubation. Conclusively, we found that UDCA may playa cytoprotective role in microglial cells through direct or indirect pathways by scavenging a toxic compound or an anti-inflammatory effect, which are known as major causes of neurodegenerative diseases.

Improved Perfusion Contrast and Reliability in MR Perfusion Images Using A Novel Arterial Spin Labeling

  • Jahng, Geon-Ho;Xioaping Zhu;Gerald Matson;Weiner, Michael-W;Norbert Schuff
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.341-344
    • /
    • 2002
  • Neurodegenerative disorders, like Alzheimer's disease, are often accompanied by reduced brain perfusion (cerebral blood flow). Using the intrinsic magnetic properties of water, arterial spin labeling magnetic resonance imaging (ASLMRI) can map brain perfusion without injection of radioactive tracers or contrast agents. However, accuracy in measuring perfusion with ASL-MRI can be limited because of contributions to the signal from stationary spins and because of signal modulations due to transient magnetic field effects. The goal was to optimize ASL-MRI for perfusion measurements in the aging human brain, including brains with Alzheimer's disease. A new ASL-MRI sequence was designed and evaluated on phantom and humans. Image texture analysis was performed to test quantitatively improvements. Compared to other ASL-MRI methods, the newly designed sequence provided improved signal to noise ratio improved signal uniformity across slices, and thus, increased measurement reliability. This new ASL-MRI sequence should therefore provide improved measurements of regional changes of brain perfusion in normal aging and neurodegenerative disorders.

  • PDF

A comprehensive review of the therapeutic effects of Hericium erinaceus in neurodegenerative disease

  • Kim, Young Ock;Lee, Sang Won;Kim, Jin Seong
    • Journal of Mushroom
    • /
    • v.12 no.2
    • /
    • pp.77-81
    • /
    • 2014
  • Mushrooms are considered not only as food but also for source of physiologically beneficial medicines. The culinary-medicinal mushrooms may important role in the prevention of age-associated neurological dysfunctions, including Alzheimer's and Parkinson's diseases. Hericium erinaceus (H. erinaceus), is edible mushrooms, is a parasitic fungus that grows hanging off of logs and trees and well established candidate for brain and nerve health. H. erinaceus contains high amounts of antioxidants, beta-glucan, polysaccharides and a potent catalyst for brain tissue regeneration and helps to improve memory and cognitive functions. Its fruiting bodies and the fungal mycelia exhibit various pharmacological activities, including the enhancement of the immune system, antitumor, hypoglycemic and anti-aging properties. H. erinaceus stimulates the synthesis of Nerve Growth Factor (NGF) which is the primary protein nutrient responsible for enhancing and repairing neurological disorders. Especially hericenones and erinacines isolated from its fruitin body stimulate NGF, synthesis. This fungus is also utilized to regulate blood levels of glucose, triglycerides and cholesterol. H. erinaceus can be considered as useful therapeutic agents in the management and/or treatment of neurodegeneration diseases. However, this review focuses on in vitro, in vivo and clinical trials for neurodegerative disease.

Perspectives for Ginsenosides in Models of Parkinson's Disease

  • Wei-Ming, Lin;Gille, Gabriele;Radad, Khaled;Rausch, Wolf-Dieter
    • Journal of Ginseng Research
    • /
    • v.31 no.3
    • /
    • pp.127-136
    • /
    • 2007
  • Ginseng, the root of Panax species, is a well-known herbal medicine. It has been used as traditional medicine in Korea, China and Japan for thousands of years and now is a popular and worldwide natural medicine. The active principles of ginseng are ginsenosides which are also called ginseng saponins. Traditionally ginseng has been used primarily as a tonic to invigorate weak body functions and help the restoration of homeostasis. Current in vivo and in vitro studies demonstrate its beneficial effects in a wide range of pathological conditions such as cardiovascular diseases, cancer, immune deficiency and hepatotoxicity. Moreover, recent research indicates that some of ginseng's active ingredients exert beneficial actions on aging and neurodegenerative disorders such as Parkinson´s disease. Essentially, antioxidant, antiinflammatory, anti-apoptotic and immunostimulant activities are mostly underlying the postulated ginseng-mediated protective mechanisms. Next to animal studies, data from neural cell cultures contribute to the understanding of these mechanisms which involve decreasing nitric oxide, scavenging of free radicals and counteracting excitotoxicity. This paper focuses on own and other neuroprotective data on ginseng for dopaminergic neurons and intends to show aspects where neuroprotection e.g. by ginsenosides, additionally or preceding standard Parkinson therapy, could come about as a valuable contribution to slow neurodegenerative processes.

Cera Flava Improves Behavioral and Dopaminergic Neuronal Activities in a Mouse Model of Parkinson's Disease (황납추출물이 도파민세포 보호효과 및 파킨슨병 행동장애에 미치는 영향)

  • Lim, Hye-Sun;Moon, Byeong Cheol;Park, Gunhyuk
    • Journal of Environmental Science International
    • /
    • v.31 no.5
    • /
    • pp.423-429
    • /
    • 2022
  • Parkinson's Disease (PD) is a chronic neurodegenerative disorder caused by the progressive loss of dopaminergic neurons, leading to decreased dopamine levels in the midbrain. Although the specific etiology of PD is not yet known, oxidative stress, inflammation, and subsequent apoptosis have been proposed to be closely related to PD pathophysiology. Cera Flava (CF) is a natural extract obtained from beehives and is isolated through the heating, compression, filtration, and purification of beehives. CF has been used in traditional medicines for its various clinical and pharmacological effects. However, its effects on neurodegenerative diseases are unknown. Therefore, we investigated the effects of CF against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice and explored the underlying mechanism of action. In MPTP-induced PC12 cells, CF protected NADH dehydrogenase activity and inhibited lactate dehydrogenase. In the mouse model, CF promoted recovery from movement impairments, prevented dopamine depletion, and protected against MPTP-induced dopaminergic neuronal degradation. Moreover, CF downregulated glial and microglial activation. Taken together, our results suggest that CF improves behavioral impairments and protects against dopamine depletion in MPTP-induced toxicity by inhibiting glial and microglial activation.

Neuroprotective Effects of Protein Tyrosine Phosphatase 1B Inhibition against ER Stress-Induced Toxicity

  • Jeon, Yu-Mi;Lee, Shinrye;Kim, Seyeon;Kwon, Younghwi;Kim, Kiyoung;Chung, Chang Geon;Lee, Seongsoo;Lee, Sung Bae;Kim, Hyung-Jun
    • Molecules and Cells
    • /
    • v.40 no.4
    • /
    • pp.280-290
    • /
    • 2017
  • Several lines of evidence suggest that endoplasmic reticulum (ER) stress plays a critical role in the pathogenesis of many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Protein tyrosine phosphatase 1B (PTP1B) is known to regulate the ER stress signaling pathway, but its role in neuronal systems in terms of ER stress remains largely unknown. Here, we showed that rotenone-induced toxicity in human neuroblastoma cell lines and mouse primary cortical neurons was ameliorated by PTP1B inhibition. Moreover, the increase in the level of ER stress markers ($eIF2{\alpha}$ phosphorylation and PERK phosphorylation) induced by rotenone treatment was obviously suppressed by concomitant PTP1B inhibition. However, the rotenone-induced production of reactive oxygen species (ROS) was not affected by PTP1B inhibition, suggesting that the neuroprotective effect of the PTP1B inhibitor is not associated with ROS production. Moreover, we found that MG132-induced toxicity involving proteasome inhibition was also ameliorated by PTP1B inhibition in a human neuroblastoma cell line and mouse primary cortical neurons. Consistently, downregulation of the PTP1B homologue gene in Drosophila mitigated rotenone- and MG132-induced toxicity. Taken together, these findings indicate that PTP1B inhibition may represent a novel therapeutic approach for ER stress-mediated neurodegenerative diseases.

Protective effect of Capsosiphon fulvescens on oxidative stress-stimulated neurodegenerative dysfunction of PC12 cells and zebrafish larva models

  • Laxmi Sen Thakuri;Jung Eun Kim;Jin Yeong Choi;Dong Young Rhyu
    • Fisheries and Aquatic Sciences
    • /
    • v.26 no.1
    • /
    • pp.24-34
    • /
    • 2023
  • Reactive oxygen species (ROS) at high concentrations induce oxidative stress, an imbalanced redox state that is a prevalent cause of neurodegenerative disorders. This study aimed to investigate the protective effect of Capsosiphon fulvescens (CF) extract on oxidative stress-induced impairment of cognitive function in models of neurodegenerative diseases. CF was extracted with subcritical water and several solvents and H2O2 (0.25 mM) or aluminum chloride (AlCl3; 25 µM) as an inducer of ROS was treated in PC12 neuronal cells and zebrafish larvae. All statistical analyses were performed using one-way analysis of variance and Dunnett's test using GraphPad Prism. H2O2 and AlCl3 were found to significantly induce ROS production in PC12 neuronal cells and zebrafish larvae. In addition, they strongly affected intracellular Ca2+ levels, antioxidant enzyme activity, brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) signaling, acetylcholinesterase (AChE) activity, and hallmarks of Alzheimer's disease. However, treatment of H2O2-induced PC12 cells or AlCl3-induced zebrafish larvae with CF subcritical water extract at 90℃ and CF water extract effectively regulated excessive ROS production, intracellular Ca2+ levels, and mRNA expression of superoxide dismutase, glutathione peroxide, glycogen synthase kinase-3 beta, β-amyloid, tau, AChE, BDNF, and TrkB. Our study suggested that CF extracts can be a potential source of nutraceuticals that can improve the impairment of cognitive function and synaptic plasticity by regulating ROS generation in neurodegenerative diseases.

A Method of Feature Extraction on Micro-Raman Spectra for Classification of Neuro-degenerative Disorders (마이크로 라만 스펙트럼에서 퇴행성 뇌신경질환 분류를 위한 특징 추출 방법 연구)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.80-85
    • /
    • 2011
  • Alzheimer's disease and Parkinson's disease are the most common neurodegenerative disorders. In this paper, we proposed a feature extraction method for classification of AD and PD based on micro-Raman spectra from platelet. The first step of the preprocessing is a simple smoothing followed by background elimination to the original spectra to make it easy to measure the intensity of the peaks. The last step of the preprocessing was peak alignment with the reference peak. After the inspection of the preprocessed spectra, we found that proportion of two peak intensity at 743 and $757cm^{-1}$ and peak intensity at 1248 and $1448cm^{-1}$ are the most discriminative features. Then we apply mapstd method for normalization. The method returned data with means to 0 and deviation to 1. With these three features, the classification result involving 263 spectra showed about 95.8% true classification in case of MAP(maximum a posteriori probability).