• Title/Summary/Keyword: Neuro2A cell

Search Result 74, Processing Time 0.025 seconds

An Analysis of Requisite Knowledge Body of Physiology for Nursing Education (간호학 관점에서 본 생리학 지식체 내용 분석)

  • Seo Wha-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.2 no.2
    • /
    • pp.229-237
    • /
    • 1995
  • The purpose of this study is to define requisite content of physiology for nursing education. This study classifies the subjects of physiology into 15 areas. The areas are cell and cell membrane, body fluid, nervous system, special sense, muscular system, blood, cardiovascular system, respiratory system, urinary system, digestive system, energy metabolism, body temperature, immune system, endocrine system, and reproductive system. Each subject area is further classified into subarea, resulting in a total of 194 subarea. The importance of each subarea is measured with a 3-point scale using a questionnaire. The subjects of this study were full-time professors teaching nursing in Korean universities. The analysis of the data collected from 68 respondents is as follows. 1. The areas of physiology necessary for nursing education in the order of importance are : body fluid, blood, endocrine, immune system, body temperature, urinary system, respiratory system, digestive system, reproductive system, energy metabolism, nervous system, cardiovascular system, cell and cell membrane, muscular system, and special sense. 2. Depending on the specific areas of nursing(such as pediatric nursing, maternity nursing), the importance of each physiology area may differ. For instance, the most important area for maternity nursing is reproductive physiology, whereas one for the psychiatric nursing is neuro-physiology. 3. The importance of each physiology area does not determine the importance of its subarea. For example, while the importance of cell and cell membrane was relatively very low across the respondents from different areas of nursing science, the importance of such subarea as osmosis, diffusion, and filteration reported by most respondents were high.

  • PDF

Inhibition of miR-128 Abates Aβ-Mediated Cytotoxicity by Targeting PPAR-γ via NF-κB Inactivation in Primary Mouse Cortical Neurons and Neuro2a Cells

  • Geng, Lijiao;Zhang, Tao;Liu, Wei;Chen, Yong
    • Yonsei Medical Journal
    • /
    • v.59 no.9
    • /
    • pp.1096-1106
    • /
    • 2018
  • Purpose: Alzheimer's disease (AD) is the sixth most common cause of death in the United States. MicroRNAs have been identified as vital players in neurodegenerative diseases, including AD. microRNA-128 (miR-128) has been shown to be dysregulated in AD. This study aimed to explore the roles and molecular mechanisms of miR-128 in AD progression. Materials and Methods: Expression patterns of miR-128 and peroxisome proliferator-activated receptor gamma ($PPAR-{\gamma}$) messenger RNA in clinical samples and cells were measured using RT-qPCR assay. $PPAR-{\gamma}$ protein levels were determined by Western blot assay. Cell viability was determined by MTT assay. Cell apoptotic rate was detected by flow cytometry via double-staining of Annexin V-FITC/PI. Caspase 3 and $NF-{\kappa}B$ activity was determined by a Caspase 3 Activity Assay Kit or $NF-{\kappa}B$ p65 Transcription Factor Assay Kit, respectively. Bioinformatics prediction and luciferase reporter assay were used to investigate interactions between miR-128 and $PPAR-{\gamma}$ 3'UTR. Results: MiR-128 expression was upregulated and $PPAR-{\gamma}$ expression was downregulated in plasma from AD patients and $amyloid-{\beta}$ $(A{\beta})-treated$ primary mouse cortical neurons (MCN) and Neuro2a (N2a) cells. Inhibition of miR-128 decreased $A{\beta}-mediated$ cytotoxicity through inactivation of $NF-{\kappa}B$ in MCN and N2a cells. Moreover, $PPAR-{\gamma}$ was a target of miR-128. $PPAR-{\gamma}$ upregulation attenuated $A{\beta}-mediated$ cytotoxicity by inactivating $NF-{\kappa}B$ in MCN and N2a cells. Furthermore, $PPAR-{\gamma}$ downregulation was able to abolish the effect of anti-miR-128 on cytotoxicity and $NF-{\kappa}B$ activity in MCN and N2a cells. Conclusion: MiR-128 inhibitor decreased $A{\beta}-mediated$ cytotoxicity by upregulating $PPAR-{\gamma}$ via inactivation of $NF-{\kappa}B$ in MCN and N2a cells, providing a new potential target in AD treatment.

Studies on the Anti-inflammatory and Anti-apoptotic Effect of Catalposide Isolated from Catalpa ovata (개오동나무에서 추출(抽出)한 Catalposide의 항염(抗炎) 및 세포고사(細胞枯死) 억제효과(抑制效果)에 관(關)한 연구(硏究))

  • Oh, Cheon-Sik;Hwang, Sang-Wook;Kim, Yong-Woo;Song, Dal-Soo;Chae, Young-Seok;Jeong, Jong-Gil;Song, Ho-Joon;Shin, Min-Kyo
    • The Korea Journal of Herbology
    • /
    • v.20 no.3
    • /
    • pp.29-41
    • /
    • 2005
  • Objectives : The use of natural products with therapeutic properties is as ancient as human civilisation and, for a long time, mineral, plant and animal products were the main sources of drugs. Catalposide, the major iridoid glycoside isolated from the stem bark of Catalpa ovata G. Don (Bignoniceae) has been shown to possess anti-microbial and anti-tumoral properties. Heme oxygenase-1 (HO-1) is a stress response protein and is known to play a protective role against the oxidative injury. In this study, we examined whether catalposide could protect Neuro 2A cells, a kind of neuronal cell lines, from oxidative damage through the induction of HO-1 protein expression and HO activity. We also examined the effects of catalposide on the productions of tumor necrosis $factor-{\alpha}\;(TNF-{\alpha})$ and nitric oxide (NO) on RAW 264.7 macrophages activated with the endotoxin lipopolysaccharide. Methods : HO-1 expression in Neuro 2A cells was measured by Western blotting analysis. NO and $TNF--{\alpha}$ produced by RAW 264.7 macrophage were measured by Griess reagent and enzyme-linked immunosorbent assay, respectively. Results : The treatment of the cells with catalposide resulted in dose- and time-dependent up-regulations of both HO-1 protein expression and HO activity. Catalposide protected the cells from hydrogen peroxide-induced cell death. The protective effect of catalposide on hydrogen peroxide-induced cell death was abrogated by zinc protoporphyrin IX, a HO inhibitor. Additional experiments revealed the involvement of CO in the cytoprotective effect of catalposide-induced HO-1. In addition, catalposide inhibited the productions of $TNF--{\alpha}$ and NO with significant decreases in mRNA levels of $TNF--{\alpha}$ and inducible NO synthase. Conclusions : Our results indicate that catalposide is a potent inducer of HO-1 and HO-1 induction is responsible for the catalposide-mediated cytoprotection against oxidative damage and that catalposide may have therapeutic potential in the control of inflammatory disorders.

  • PDF

Ape1/Ref-1 Stimulates GDNF/GFR ${\alpha}$ 1-mediated Downstream Signaling and Neuroblastoma Proliferation

  • Kang, Mi-Young;Kim, Kweon-Young;Yoon, Young;Kang, Yoon-Sung;Kim, Hong-Beum;Youn, Cha-Kyung;Kim, Dong-Hui;Kim, Mi-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.5
    • /
    • pp.349-356
    • /
    • 2009
  • We previously reported that glial cell line-derived neurotropic factor (GDNF) receptor ${\alpha}$ 1 (GFR ${\alpha}$ 1) is a direct target of apurinic/apyrimidinic endonuclease 1 (Ape1/Ref-1). In the present study, we further analyzed the physiological roles of Ape1/Ref-1-induced GFR ${\alpha}$ 1 expression in Neuro2a mouse neuroblastoma cells. Ape1/Ref-1 expression caused the clustering of GFR ${\alpha}$ 1 immunoreactivity in lipid rafts in response to GDNF. We also found that Ret, a downstream target of GFR ${\alpha}$ 1, was functionally activated by GDNF in Ape1/Ref-1-expressing cells. Moreover, GDNF promoted the proliferation of Ape1/Ref-1-expressing Neuro2a cells. Furthermore, GFR ${\alpha}$ 1-specific RNA experiments demonstrated that the downregulation of GFR ${\alpha}$ 1 by siRNA in Ape1/Ref-1-expressing cells impaired the ability of GDNF to phosphorylate Akt and PLC ${\gamma}$-1 and to stimulate cellular proliferation. These results show an association between Ape1/Ref-1 and GDNF/GFR ${\alpha}$ signaling, and suggest a potential molecular mechanism for the involvement of Ape1/Ref-1 in neuronal proliferation.

A Study on the Protective Effects of Polygalae Radix on Neurotoxicity Induced by N-methyl-D-aspartic acid(NMDA) (원지(遠志)가 NMDA로 유발된 선경세포 손상에 미치는 효과)

  • Lee, Soo-Bae;Seong, Nak-Sul;Lee, Young-Jong
    • The Korea Journal of Herbology
    • /
    • v.20 no.2
    • /
    • pp.115-125
    • /
    • 2005
  • Objectives : Polygalae Radix (PR) from Polygalae tenuifolia (Polygalaceae) has been clinically used as a sedative, anti-inflammatory, and anti-bacterial agent. To extend pharmacological effects of PR in the central nervous system (CNS) on the basis of its CNS protective effect, the present study was conducted to identify the effect of PR, whether it shows the neuroprotective action against excitatory neurotoxicity. Methods : To identify the protective effect of PR to excitatory neuro-toxic agent, the present study was focused on the PR effect on cell death, that was caused by applying NMDA to nerve cell, elevation of $(Ca^{2+})_i$, releasement of glutamate, and ROS generation. Result : 1. PR methanol extract, at the concentration range of 0.05 to 5 g/ml, significantly inhibited NMDA (1 mM)-induced neuronal cell death as well as MK-801 (non competitive NMDA antagonist). 2. PR methanol extract $(0.5\;{\mu}g/ml)$ inhibited NMDA (1 mM)-induced elevation of cytosolic calcium concentration $[Ca^{2+}]_i$. NMDA application in the presence of MK-801 $(10\;{\mu}M)$ failed to produce the increase of $[Ca^{2+}]_i$ through all the measurement time. 3. PR methanol extract $(0.5\;{\mu}g/ml)$ inhibited the NMDA-induced elevation of glutamate release. Also, MK-801 showed similar protective effects. 4. PR methanol extract $(0.5\;{\mu}g/ml)$ inhibited the NMDA-induced elevation of ROS generation. Also, MK-801 showed similar protective effects. Conclusion : The present study provides the availability of PR to exert its protective effect on the neuronal cell death in various neurodegenerative pathophysiological conditions.

  • PDF

Insulin resistance and Alzheimer's disease

  • De La Monte, Suzanne M.
    • BMB Reports
    • /
    • v.42 no.8
    • /
    • pp.475-481
    • /
    • 2009
  • Emerging data demonstrate pivotal roles for brain insulin resistance and insulin deficiency as mediators of cognitive impairment and neurodegeneration, particularly Alzheimer's disease (AD). Insulin and insulin-like growth factors (IGFs) regulate neuronal survival, energy metabolism, and plasticity, which are required for learning and memory. Hence, endogenous brain-specific impairments in insulin and IGF signaling account for the majority of AD-associated abnormalities. However, a second major mechanism of cognitive impairment has been linked to obesity and Type 2 diabetes (T2DM). Human and experimental animal studies revealed that neurodegeneration associated with peripheral insulin resistance is likely effectuated via a liver-brain axis whereby toxic lipids, including ceramides, cross the blood brain barrier and cause brain insulin resistance, oxidative stress, neuro-inflammation, and cell death. In essence, there are dual mechanisms of brain insulin resistance leading to AD-type neurodegeneration: one mediated by endogenous, CNS factors; and the other, peripheral insulin resistance with excess cytotoxic ceramide production.

Neuroprotective Effects of Scopoletin on Neuro-damage caused by Alcohol in Primary Hippocampal Neurons

  • Lee, Jina;Cho, Hyun-Jeong
    • Biomedical Science Letters
    • /
    • v.26 no.2
    • /
    • pp.57-65
    • /
    • 2020
  • Excessive drinking of alcohol is known to be one of the main causes of various neurological diseases, such as Alzheimer's disease. Scopoletin is known to have anti-inflammatory and antioxidative properties, and to protect nerve cells. This study examined whether scopoletin inhibits the alcohol-induced apoptosis of primary hippocampal neurons, and how scopoletin regulates several factors associated with the caspase-mediated pathway. To achieve this, the cell viability and apoptosis rate of primary hippocampal neurons were measured by Cell Counting Kit-8 and flow cytometry, respectively. Apoptosis-related protein expressions (Bax, Bid, caspase-3, caspase-9, and Poly (ADP-ribose) polymerase (PARP)) were analyzed by Western blotting, and the ANOVA method was used to confirm the significance of the measured results. As a result, scopoletin inhibited the expressions of alcohol-induced apoptosis and apoptosis-related proteins in primary hippocampal neurons. These results suggest that down-regulation of Bid, Bax, and cleaved caspase-9 expression induced by scopoletin down-regulates the expression of cleaved caspase-3, inhibits the expression of cleaved PARP, and finally, inhibits mitochondrial apoptotic pathways. The study suggests that scopoletin is worth developing as a candidate for neuroprotective agent.

Effects of MeOH Extract from Stem Bark of Plantocracy strobilacea on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (화향수(化香樹) 수피(樹皮)의 메탄올 추출물이 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Jiang, Gui Bao;Leem, Jae Yoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Alzheimer's disease (AD), one of the most common forms of dementia, is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid ($A{\beta}$) peptides of 40-42 residues, which are generated by processing of amyloid precursor protein (APP). $A{\beta}$ has been believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. Here, we show that MeOH extract from stem bark of Platycarya strobilacea Sieb. et. Zucc. (PSM) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that PSM may regulate the processing of APP and increase the sAPP${\alpha}$. PSM does not change the protein level of presenilin and nicastrin, however, it reduces the protein expression level of BACE1. In addition, PSM reduces the secretion level of $A{\beta}42$ and $A{\beta}40$ from the cell line without toxicity. We suggest that Platycarya strobilacea may be useful as a herbal medicine to treat Alzheimer's disease.

Effects of Styrax Liquides on the Secretion of ${\beta}$-amyloid Precursor Protein in Neuroblastoma Cells (소합향(蘇合香)이 신경 세포에서 베타 아밀로이드 분비에 미치는 영향)

  • Leem, Jae-Yoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.1
    • /
    • pp.91-95
    • /
    • 2010
  • Alzheimer's disease (AD) is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid (A${\beta}$) peptides. It is urgent to develop effective therapies for the treatment of AD, since our society rapidly accelerate aging. A${\beta}$ peptides have been believed to be neurotoxic and now are also considered to have affects on the mechanism of memory formation, which are generated by processing of amyloid precursor protein (APP). In this study, effects of Styrax Liquides (SL) on the metabolism of APP were analyzed. SL inhibited the secretion of A${\beta}$ from the Neuro2a cell line (APPswe cell) expressing a mutation of APPswe. Immunoblotting study showed that it inhibited ${\beta}$-site APP cleaving enzyme (BACE) from the APPswe cells. We suggest that SL inhibits APP metabolism and A${\beta}$ generation by the means of BACE inhibitory mechanism. This is the first report that SL inhibits the secretion of A${\beta}$ peptides from neuroblastoma cells.

Derivation of Neural Precursor Cells from Human Embryonic Stem Cells

  • Kim Sehee;Hong Ji Young;Joo So Yeon;Kim Jae Hwan;Moon Shin Yong;Yoon Hyun Soo;Kim Doo Han;Chung Hyung Min;Choi Seong-Jun
    • Reproductive and Developmental Biology
    • /
    • v.28 no.4
    • /
    • pp.247-252
    • /
    • 2004
  • Human embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo. Human ES cells have the capacity to differentiate into various types of cells in the body. Human ES cells are indefinite source of cells for cell therapy in various degenerative disorders including neuronal disorders. Directed differentiation of human ES cells is a prerequisite for their clinical application. The objective of this study is to develop the culture condition for the derivation of neural precursor cells from human ES cells. Neural precursor cells were derived from human ES cells in a stepwise culture condition. Neural precursor cells in the form of neural rosette structures developed into neurospheres when cultured in suspension. Suspension culture of neurospheres has been maintained over 4 months. Expressions of nestin, soxl, sox2, pax3 and pax6 transcripts were upregulated during differentiation into neural precursor cells by RT-PCR analysis. In contrast, expression of oct4 was dramatically downregulated in neural precursor cells. Immunocytochemical analyses of neural precursor cells demonstrated expression of nestin and SOX1. When induced to differentiate on an adhesive substrate, neuro-spheres were able to differentiate into three lineages of neural systems, including neurons, astrocytes and oligo-dendrocytes. Transcripts of sox1 and pax6 were downregulated during differentiation of neural precursor cells into neurons. In contrast, expression of map2ab was elevated in the differentiated cells, relative to those in neural precursor cells. Neurons derived from neural precursor cells expressed NCAM, Tuj1, MAP2ab, NeuN and NF200 in immunocytochemical analyses. Presence of astrocytes was confirmed by expression of GFAP immuno-cytochemically. Oligodendrocytes were also observed by positive immuno-reactivities against oligodendrocyte marker O1. Results of this study demonstrate that a stepwise culture condition is developed for the derivation of neural precursor cells from human ES cells.