• Title/Summary/Keyword: Neuro-fuzzy model

Search Result 217, Processing Time 0.023 seconds

Anomaly Intrusion Detection using Fuzzy Membership Function and Neural Networks (퍼지 멤버쉽 함수와 신경망을 이용한 이상 침입 탐지)

  • Cha, Byung-Rae
    • The KIPS Transactions:PartC
    • /
    • v.11C no.5
    • /
    • pp.595-604
    • /
    • 2004
  • By the help of expansion of computer network and rapid growth of Internet, the information infrastructure is now able to provide a wide range of services. Especially open architecture - the inherent nature of Internet - has not only got in the way of offering QoS service, managing networks, but also made the users vulnerable to both the threat of backing and the issue of information leak. Thus, people recognized the importance of both taking active, prompt and real-time action against intrusion threat, and at the same time, analyzing the similar patterns of in-trusion already known. There are now many researches underway on Intrusion Detection System(IDS). The paper carries research on the in-trusion detection system which hired supervised learning algorithm and Fuzzy membership function especially with Neuro-Fuzzy model in order to improve its performance. It modifies tansigmoid transfer function of Neural Networks into fuzzy membership function, so that it can reduce the uncertainty of anomaly intrusion detection. Finally, the fuzzy logic suggested here has been applied to a network-based anomaly intrusion detection system, tested against intrusion data offered by DARPA 2000 Intrusion Data Sets, and proven that it overcomes the shortcomings that Anomaly Intrusion Detection usually has.

Implementation of Intelligent Expert System for Color Measuring/Matching (칼라 매저링/매칭용 지능형 전문가 시스템의 구현)

  • An, Tae-Cheon;Jang, Gyeong-Won;O, Seong-Gwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.7
    • /
    • pp.589-598
    • /
    • 2002
  • The color measuring/matching expert system is implemented with a new color measuring method that combines intelligent algorithms with image processing techniques. Color measuring part of the proposed system preprocesses the scanned original color input images to eliminate their distorted components by means of the image histogram technique of image pixels, and then extracts RGB(Red, Green, Blue)data among color information from preprocessed color input images. If the extracted RGB color data does not exist on the matching recipe databases, we can measure the colors for the user who want to implement the model that can search the rules for the color mixing information, using the intelligent modeling techniques such as fuzzy inference system and adaptive neuro-fuzzy inference system. Color matching part can easily choose images close to the original color for the user by comparing information of preprocessed color real input images with data-based measuring recipe information of the expert, from the viewpoint of the delta Eformula used in practical process.

Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings

  • Ramezani, Meysam;Bathaei, Akbar;Zahrai, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.61-74
    • /
    • 2017
  • One of the most reliable and simplest tools for structural vibration control in civil engineering is Tuned Mass Damper, TMD. Provided that the frequency and damping parameters of these dampers are tuned appropriately, they can reduce the vibrations of the structure through their generated inertia forces, as they vibrate continuously. To achieve the optimal parameters of TMD, many different methods have been provided so far. In old approaches, some formulas have been offered based on simplifying models and their applied loadings while novel procedures need to model structures completely in order to obtain TMD parameters. In this paper, with regard to the nonlinear decision-making of fuzzy systems and their enough ability to cope with different unreliability, a method is proposed. Furthermore, by taking advantage of both old and new methods a fuzzy system is designed to be operational and reduce uncertainties related to models and applied loads. To design fuzzy system, it is required to gain data on structures and optimum parameters of TMDs corresponding to these structures. This information is obtained through modeling MDOF systems with various numbers of stories subjected to far and near field earthquakes. The design of the fuzzy systems is performed by three methods: look-up table, the data space grid-partitioning, and clustering. After that, rule weights of Mamdani fuzzy system using the look-up table are optimized through genetic algorithm and rule weights of Sugeno fuzzy system designed based on grid-partitioning methods and clustering data are optimized through ANFIS (Adaptive Neuro-Fuzzy Inference System). By comparing these methods, it is observed that the fuzzy system technique based on data clustering has an efficient function to predict the optimal parameters of TMDs. In this method, average of errors in estimating frequency and damping ratio is close to zero. Also, standard deviation of frequency errors and damping ratio errors decrease by 78% and 4.1% respectively in comparison with the look-up table method. While, this reductions compared to the grid partitioning method are 2.2% and 1.8% respectively. In this research, TMD parameters are estimated for a 15-degree of freedom structure based on designed fuzzy system and are compared to parameters obtained from the genetic algorithm and empirical relations. The progress up to 1.9% and 2% under far-field earthquakes and 0.4% and 2.2% under near-field earthquakes is obtained in decreasing respectively roof maximum displacement and its RMS ratio through fuzzy system method compared to those obtained by empirical relations.

Integrity Assessment for Reinforced Concrete Structures Using Fuzzy Decision Making (퍼지의사결정을 이용한 RC구조물의 건전성평가)

  • 손용우;정영채;김종길
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.2
    • /
    • pp.131-140
    • /
    • 2004
  • It really needs fuzzy decision making of integrity assessment considering about both durability and load carrying capacity for maintenance and administration, such as repairing and reinforcing. This thesis shows efficient models about reinforced concrete structure using CART-ANFIS. It compares and analyzes decision trees parts of expert system, using the theory of fuzzy, and applying damage & diagnosis at reinforced concrete structure and decision trees of integrity assessment using established artificial neural. Decided the theory of reinforcement design for recovery of durability at damaged concrete & the theory of reinforcement design for increasing load carrying capacity keep stability of damage and detection. It is more efficient maintenance and administration at reinforced concrete for using integrity assessment model of this study and can carry out predicting cost of life cycle.

Estimation of the mechanical properties of oil palm shell aggregate concrete by novel AO-XGB model

  • Yipeng Feng;Jiang Jie;Amir Toulabi
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.645-666
    • /
    • 2023
  • Due to the steadily declining supply of natural coarse aggregates, the concrete industry has shifted to substituting coarse aggregates generated from byproducts and industrial waste. Oil palm shell is a substantial waste product created during the production of palm oil (OPS). When considering the usage of OPSC, building engineers must consider its uniaxial compressive strength (UCS). Obtaining UCS is expensive and time-consuming, machine learning may help. This research established five innovative hybrid AI algorithms to predict UCS. Aquila optimizer (AO) is used with methods to discover optimum model parameters. Considered models are artificial neural network (AO - ANN), adaptive neuro-fuzzy inference system (AO - ANFIS), support vector regression (AO - SVR), random forest (AO - RF), and extreme gradient boosting (AO - XGB). To achieve this goal, a dataset of OPS-produced concrete specimens was compiled. The outputs depict that all five developed models have justifiable accuracy in UCS estimation process, showing the remarkable correlation between measured and estimated UCS and models' usefulness. All in all, findings depict that the proposed AO - XGB model performed more suitable than others in predicting UCS of OPSC (with R2, RMSE, MAE, VAF and A15-index at 0.9678, 1.4595, 1.1527, 97.6469, and 0.9077). The proposed model could be utilized in construction engineering to ensure enough mechanical workability of lightweight concrete and permit its safe usage for construction aims.

Study on Development of Insulation Degradation Diagnosis System for Electrical Transformer (변압기 절연열화진단 시스템개발에 관한 고찰)

  • 김이곤;유권종;김서영;조용섭;박봉서;최시영;심상욱
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.139-144
    • /
    • 2001
  • Insulation aging diagnosis system provides early warning regarding electrical equipment defect. Early warning is very important in that it can avoid great losses resulting from unexpected shutdown of the production line. Since relations of insulation aging and partial discharge dynamics are non-linear, it is very difficult to provide early warning in an electrical equipment. In this paper, we propose the design method of insulation aging diagnosis system that use a magnetic wave and acoustic signal to diagnoses an electrical equipment. Proposed system measures the partial discharge on-line from DAS(Data Acquisition System) and acquires 2D patterns from analyzing it. For filtering the noise contained in sensor signals we used ICA algorithms. Using this data, design of the neuro-fuzzy model that diagnoses an electrical equipment is investigated. Validity of the new method is asserted by numerical simulation.

  • PDF

Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측)

  • 박영진;황보현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.04a
    • /
    • pp.283-287
    • /
    • 2004
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시접에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Prediction of Vapor-Compressed Chiller Performance Using ANFIS Model (냉동기 성능 진단을 위한 적응형 뉴로퍼지(ANFIS) 모델 개발)

  • Shin, Young-Gy;Chang, Young-Soo;Kim, Young-Il
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.89-95
    • /
    • 2001
  • On-site diagnosis of chiller performance is an essential step for energy saving business. The main purpose of the on-site diagnosis is to predict the COP of a target chiller. Many models based on thermodynamics background have been proposed for the purpose. However, they have to be modified from chiller to chiller and require deep insight into thermodynamics that most of field engineers are often lacking in. This study focuses on developing an easy-to-use diagnostic technique that is based on adaptive neuro-fuzzy inference system (ANFIS). Quality of the training data for ANFIS, sampled over June through September, is assessed by checking COP prediction errors. The architecture of the ANFIS, its error bounds, and collection of training data are described in detail.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 시간, 일간, 주간 단위 예측)

  • Park, Young-Jin;Choi, Jae-Gyun;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.323-326
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기 구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한국전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

  • PDF

Neuro-Fuzzy Model based Short-Term Electrical Load Forecasting: Reliability Computation (뉴로-퍼지 모델 기반 단기 전력 수요 예측시스템: 신뢰도 계산)

  • Shim, Hyun-Jeong;Park, Lae-Jeong;Wang, Bo-Hyeun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.318-322
    • /
    • 2001
  • 본 논문은 뉴로-퍼지 모델의 구조 학습을 이용한 단기 전력 수요 예측시스템에서 예측치별로 신뢰도를 계산하는 체계적인 방법을 제안한다. 예측시스템의 신뢰도를 추정하는 작업은 특히 신경회로망과 같은 경험적 모델을 실제 활용하기 위해서 필수적인 연구로 인식되고 있다. 본 논문에서 제안하는 출력별 신뢰 구간 계산 방법은 지역 표현하는 뉴로-퍼지 모델의 특성을 활용하여 학습된 퍼지 규칙 각각에 대해 신뢰도를 추정하는 Local reliability measure 기법을 사용한다. 제안된 신뢰도 계산이 가능한 단기 전력 수요 예측시스템은 먼저 결정 트리를 이용하여 초기 구조를 생성하고, 이를 초기 구조 뱅크에 저장한다. 저장된 초기 구조 뱅크를 이용하여 뉴로-퍼지 모델을 학습하고, 학습된 퍼지 규칙의 신뢰도를 추정한다. 제안된 시스템의 실효성을 검증하기 위해서 한국 전력에서 수집한 1996년과 1997년의 실제 전력 수요 데이터를 이용하여 한 시간 앞의 수요를 예측하는 모의 실험을 수행하고 실험 결과를 비교 분석한다.

  • PDF