• Title/Summary/Keyword: Neuro-fuzzy model

Search Result 217, Processing Time 0.032 seconds

Building a Traffic Accident Frequency Prediction Model at Unsignalized Intersections in Urban Areas by Using Adaptive Neuro-Fuzzy Inference System (적응 뉴로-퍼지를 이용한 도시부 비신호교차로 교통사고예측모형 구축)

  • Kim, Kyung Whan;Kang, Jung Hyun;Kang, Jong Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2D
    • /
    • pp.137-145
    • /
    • 2012
  • According to the National Police Agency, the total number of traffic accidents which occurred in 2010 was 226,878. Intersection accidents accounts for 44.8%, the largest portion of the entire traffic accidents. An research on the signalized intersection is constantly made, while an research on the unsignalized intersection is yet insufficient. This study selected traffic volume, road width, and sight distance as the input variables which affect unsignalized intersection accidents, and number of accidents as the output variable to build a model using ANFIS(Adaptive Neuro-Fuzzy Inference System). The forecast performance of this model is evaluated by comparing the actual measurement value with the forecasted value. The compatibility is evaluated by R2, the coefficient of determination, along with Mean Absolute Error (MAE) and Mean Square Error (MSE), the indicators which represent the degree of error and distribution. The result shows that the $R^2$ is 0.9817, while MAE and MSE are 0.4773 and 0.3037 respectively, which means that the explanatory power of the model is quite decent. This study is expected to provide the basic data for establishment of safety measure for unsignalized intersection and the improvement of traffic accidents.

Visual servoing based on neuro-fuzzy model

  • Jun, Hyo-Byung;Sim, Kwee-Bo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.712-715
    • /
    • 1997
  • In image jacobian based visual servoing, generally, inverse jacobian should be calculated by complicated coordinate transformations. These are required excessive computation and the singularity of the image jacobian should be considered. This paper presents a visual servoing to control the pose of the robotic manipulator for tracking and grasping 3-D moving object whose pose and motion parameters are unknown. Because the object is in motion tracking and grasping must be done on-line and the controller must have continuous learning ability. In order to estimate parameters of a moving object we use the kalman filter. And for tracking and grasping a moving object we use a fuzzy inference based reinforcement learning algorithm of dynamic recurrent neural networks. Computer simulation results are presented to demonstrate the performance of this visual servoing

  • PDF

Neuro-Fuzzy Diagnosis System for the Welding Condition of the CAL Recess (CAL공정내 용접상태에 대한 뉴로-퍼지 진단시스템)

  • Kim, Kyong-Min;Kim, Yi-Gon;Park, Joong-Jo;Song, Myung-Hyun;Choi, Nam-Sup;Jung, Yang-Hee;Lee, Bhum;Bae, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.10a
    • /
    • pp.642-646
    • /
    • 2000
  • The use of neural-fuzzy system to model mesh seam welding is described in this paper. Conventional, automated process generally involves sophisticated sensing and control techniques applied to various processing parameters. Welding parameters affecting quality include the arc voltage, the welding current torch travel speed and the pressure and so on. The relationship between the welding parameters and weld quality is not a direct one, md' in addition, the effect of the weld parameter variables are not independent of the each other. The effectiveness of the proposed neuro-fuzzy algorithms is demonstrated by computer simulations.

  • PDF

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

The Design of Fuzzy Controller by Means of Genetic Optimization and Estimation Algorithms

  • Oh, Sung-Kwun;Rho, Seok-Beom
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, a new design methodology of the fuzzy controller is presented. The performance of the fuzzy controller is sensitive to the variety of scaling factors. The design procedure is based on evolutionary computing (more specifically, a genetic algorithm) and estimation algorithm to adjust and estimate scaling factors respectively. The tuning of the soiling factors of the fuzzy controller is essential to the entire optimization process. And then we estimate scaling factors of the fuzzy controller by means of two types of estimation algorithms such as HCM (Hard C-Means) and Neuro-Fuzzy model[7]. The validity and effectiveness of the proposed estimation algorithm for the fuzzy controller are demonstrated by the inverted pendulum system.

  • PDF

An adaptive neuro-fuzzy inference system (ANFIS) model to predict the pozzolanic activity of natural pozzolans

  • Elif Varol;Didem Benzer;Nazli Tunar Ozcan
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.85-95
    • /
    • 2023
  • Natural pozzolans are used as additives in cement to develop more durable and high-performance concrete. Pozzolanic activity index (PAI) is important for assessing the performance of a pozzolan as a binding material and has an important effect on the compressive strength, permeability, and chemical durability of concrete mixtures. However, the determining of the 28 days (short term) and 90 days (long term) PAI of concrete mixtures is a time-consuming process. In this study, to reduce extensive experimental work, it is aimed to predict the short term and long term PAIs as a function of the chemical compositions of various natural pozzolans. For this purpose, the chemical compositions of various natural pozzolans from Central Anatolia were determined with X-ray fluorescence spectroscopy. The mortar samples were prepared with the natural pozzolans and then, the short term and the long term PAIs were calculated based on compressive strength method. The effect of the natural pozzolans' chemical compositions on the short term and the long term PAIs were evaluated and the PAIs were predicted by using multiple linear regression (MLR) and adaptive neuro-fuzzy inference system (ANFIS) model. The prediction model results show that both reactive SiO2 and SiO2+Al2O3+Fe2O3 contents are the most effective parameters on PAI. According to the performance of prediction models determined with metrics such as root mean squared error (RMSE) and coefficient of correlation (R2), ANFIS models are more feasible than the multiple regression model in predicting the 28 days and 90 days pozzolanic activity. Estimation of PAIs based on the chemical component of natural pozzolana with high-performance prediction models is going to make an important contribution to material engineering applications in terms of selection of favorable natural pozzolana and saving time from tedious test processes.

A Study on Fuzzy Wavelet Neural Network System Based on ANFIS Applying Bell Type Fuzzy Membership Function (벨형 퍼지 소속함수를 적용한 ANFIS 기반 퍼지 웨이브렛 신경망 시스템의 연구)

  • 변오성;조수형;문성용
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.363-369
    • /
    • 2002
  • In this paper, it could improved on the arbitrary nonlinear function learning approximation which have the wavelet neural network based on Adaptive Neuro-Fuzzy Inference System(ANFIS) and the multi-resolution Analysis(MRA) of the wavelet transform. ANFIS structure is composed of a bell type fuzzy membership function, and the wavelet neural network structure become composed of the forward algorithm and the backpropagation neural network algorithm. This wavelet composition has a single size, and it is used the backpropagation algorithm for learning of the wavelet neural network based on ANFIS. It is confirmed to be improved the wavelet base number decrease and the convergence speed performances of the wavelet neural network based on ANFIS Model which is using the wavelet translation parameter learning and bell type membership function of ANFIS than the conventional algorithm from 1 dimension and 2 dimension functions.

Compliance control of a telerobot system using a neuro-fuzzy model (뉴로-퍼지 모델을 이용한 원격로보트의 컴플라이언스 제어)

  • 차동혁;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.805-810
    • /
    • 1993
  • In this paper, we propose a compliance control scheme using a neurofuzzzy compliance model(NFCM). as a new control paradigm for telerobot systems. A NFCM, used as a compliance controller, is composed of a fuzzy compliance model(FCM), a neural network and a low pass filter. The NFCM is trained through a reinforcement learning algorithm, and then, can generate suitable compliant motion for a given task. A series of simulations have been performed to show applicability of the proposed algorithm send it is found that the NFCM can implement suitable compliant motion for a given task through the learning procedure.

  • PDF

Applying the ANFIS to the Analysis of Rain and Dark Effects on the Saturation Headways at Signalized Intersections (강우 및 밝기에 따른 신호교차로 포화차두시간 분석에의 적응 뉴로-퍼지 적용)

  • Kim, Kyung Whan;Chung, Jae Whan;Kim, Daehyon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.573-580
    • /
    • 2006
  • The Saturation headway is a major parameter in estimating the intersection capacity and setting the signal timing. But Existing algorithms are still far from being robust in dealing with factors related to the variation of saturation headways at signalized intersections. So this study apply the fuzzy inference system using ANFIS. The ANFIS provides a method for the fuzzy modeling procedure to learn information about a data set, in order to compute the membership function parameters that best allow the associated fuzzy inference system to track the given input/output data. The climate conditions and the degree of brightness were chosen as the input variables when the rate of heavy vehicles is 10-25 %. These factors have the uncertain nature in quantification, which is the reason why these are chosen as the fuzzy variables. A neuro-fuzzy inference model to estimate saturation headways at signalized intersections was constructed in this study. Evaluating the model using the statistics of $R^2$, MAE and MSE, it was shown that the explainability of the model was very high, the values of the statistics being 0.993, 0.0289, 0.0173 respectively.

Application of ANFIS to the design of elliptical CFST columns

  • Ngoc-Long Tran;Trong-Cuong Vo;Duy-Duan Nguyen;Van-Quang Nguyen;Huy-Khanh Dang;Viet-Linh Tran
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.147-177
    • /
    • 2023
  • Elliptical concrete-filled steel tubular (CFST) column is widely used in modern structures for both aesthetical appeal and structural performance benefits. The ultimate axial load is a critical factor for designing the elliptical CFST short columns. However, there are complications of geometric and material interactions, which make a difficulty in determining a simple model for predicting the ultimate axial load of elliptical CFST short columns. This study aims to propose an efficient adaptive neuro-fuzzy inference system (ANFIS) model for predicting the ultimate axial load of elliptical CFST short columns. In the proposed method, the ANFIS model is used to establish a relationship between the ultimate axial load and geometric and material properties of elliptical CFST short columns. Accordingly, a total of 188 experimental and simulation datasets of elliptical CFST short columns are used to develop the ANFIS models. The performance of the proposed ANFIS model is compared with that of existing design formulas. The results show that the proposed ANFIS model is more accurate than existing empirical and theoretical formulas. Finally, an explicit formula and a Graphical User Interface (GUI) tool are developed to apply the proposed ANFIS model for practical use.