• Title/Summary/Keyword: Neuro-fuzzy control (NFC)

Search Result 11, Processing Time 0.026 seconds

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

Load Frequency Control of Multi-area Power System using Auto-tuning Neuro-Fuzzy Controller (자기조정 뉴로-퍼지제어기를 이용한 다지역 전력시스템의 부하주파수 제어)

  • Jeong, Hyeong-Hwan;Kim, Sang-Hyo;Ju, Seok-Min;Heo, Dong-Ryeol;Lee, Gwon-Sun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.95-106
    • /
    • 2000
  • The load frequency control of power system is one of important subjects in view of system operation and control. That is even though the rapid load disturbances were applied to the given power system, the stable and reliable power should be supplied to the users, converging unconditionally and rapidly the frequency deviations and the tie-line power flow one on each area into allowable boundary limits. Nonetheless of such needs, if the internal parameter perturbation and the sudden load variation were given, the unstable phenomenal of power system can be often brought out because of the large frequency deviation and the unsuppressible power line one. Therefore, it is desirable to design the robust neuro-fuzzy controller which can stabilize effectively the given power system as soon as possible. In this paper the robust neuro-fuzzy controller was proposed and applied to control of load frequency over multi-area power system. The architecture and algorithm of a designed NFC(Neuro-Fuzzy Controller) were consist of fuzzy controller and neural network for auto tuning of fuzzy controller. The adaptively learned antecedent and consequent parameters of membership functions in fuzzy controller were acquired from the steepest gradient method for error-back propagation algorithm. The performances of the resultant NFC, that is, the steady-state deviations of frequency and tie-line power flow and the related dynamics, were investigated and analyzed in detail by being applied to the load frequency control of multi-area power system, when the perturbations of predetermined internal parameters. Through the simulation results tried variously in this paper for disturbances of internal parameters and external stepwise load stepwise load changes, the superiorities of the proposed NFC in robustness and adaptive rapidity to the conventional controllers were proved.

  • PDF

Speed Estimation and Control of IPMSM Drive using NFC and ANN (NFC와 ANN을 이용한 IPMSM 드라이브의 속도 추정 및 제어)

  • Lee Jung-Chul;Lee Hong-Gyun;Chung Dong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.282-289
    • /
    • 2005
  • This paper proposes a fuzzy neural network controller based on the vector control for interior permanent magnet synchronous motor(IPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability This paper does not oかy presents speed control of IPMSM using neuro-fuzzy control(NFC) but also speed estimation using artificial neural network(ANN) controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. Thus, it is presented the theoretical analysis as well as the analysis results to verify the effectiveness of the proposed method in this paper.

The Control of the Rotary Inverted Pendulum System using Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 원형 역진자 시스템의 제어)

  • 이주원;채명기;이상배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1997.10a
    • /
    • pp.45-49
    • /
    • 1997
  • In this paper, we controlled a Rotary Inverted Pendulum System using Neuro-Fuzzy Controller(NFC). The inverted pendulum system is widely used as a typical example of an unstable nonlinear control system which is difficult to control. Fuzzy theory have been because membership functions and rules of a fuzzy controller are often given by experts or a fuzzy logic control system. This controller is a feedforward multilayered network which integrates the basic elements and functions of a tradtional fuzzy logic controller into a connectionist structure which has distributed learning abilities. Such NFC can be constructed from training examples by learning rule, and the structure can be trained to develop fuzzy logic rules and find optimal input/output membership functions. Using this controller, we presented the results that controlled a Rotary Inverted Pendulum System and the associated algorithms.

  • PDF

Design of Neuro-Fuzzy Controller for Load Frequency Control of Power Line (계통의 부하주파수 제어를 위한 뉴로-퍼지제어기 설계에 관한 연구)

  • Lee, Oh-Keol;Kim, Sang-Hyo
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2005.11a
    • /
    • pp.373-376
    • /
    • 2005
  • 본 논문에서는 이와 같은 요청에 부합되는 강인한 처지제어기를 얻고자, 다층 신경회로망을 이용하여 퍼지제어기 멤버쉽 함수의 전건부 및 후건부 파라미터들을 시스템에 알맞게 자기 조정하기 위해 최급구배법(Steepest Gradient Method)에 근거한 오차 역전파 알고리즘으로 적응 학습시킬 수 있는 뉴로-퍼지제어기 (Neuro-Fuzzy Control : NFC)의 구조 및 알고리즘을 제안하였다.

  • PDF

Design of a NeuroFuzzy Controller for the Integrated System of Voice and Data Over Wireless Medium Access Control Protocol (무선 매체 접근 제어 프로토콜 상에서의 음성/데이타 통합 시스템을 위한 뉴로 퍼지 제어기 설계)

  • Choi, Won-Seock;Kim, Eung-Ju;Kim, Beom-Soo;Lim, Myo-Taeg
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1990-1992
    • /
    • 2001
  • In this paper, a NeuroFuzzy controller (NFC) with enhanced packet reservation multiple access (PRMA) protocol for QoS-guaranteed multimedia communication systems is proposed. The enhanced PRMA protocol adopts mini-slot technique for reducing contention cost, and these minislot are futher partitioned into multiple MAC regions for access requests coming from users with their respective QoS (quality-of-service) requirements. And NFC is designed to properly determine the MAC regions and access probability for enhancing the PRMA efficiency under QoS constraint. It mainly contains voice traffic estimator including the slot information estimator with recurrent neural networks (RNNs) using real-time recurrent learning (RTRL), and fuzzy logic controller with Mandani- and Sugeno-type of fuzzy rules. Simulation results show that the enhanced PRMA protocol with NFC can guarantee QoS requirements for all traffic loads and further achieves higher system utilization and less non real-time packet delay, compared to previously studied PRMA, IPRMA, SIR, HAR, and F2RAC.

  • PDF

A study on Generation rate Constraints of Power System using Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 전력시스템의 발전량 증가율 제한에 관한 연구)

  • Kim, Sang-Hyo;Lee, Chang-Woo;Joo, Seok-Min;Chong, Dong-Il;Chung, Hyung-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.301-303
    • /
    • 2002
  • The load frequency control of power system is one of important subjects in view of system operation and control. To converge within allowance load variation value the frequency and tie-line power flow deviation of each areas, we should regulate the active power output of power plant for regulation in system Applying the NFC(Neuro-Fuzzy Controller) to the model of load frequency control of 2-area power system, we prove that the control is superior to the conventional control technique through computer simulation. For verification of robustness, when we consider generator-rate constraint similar to nonlinearities of power system.

  • PDF

A Study on the Learning Method for Induction Motor Trajectory using a Neuro-Fuzzy Networks (뉴로-퍼지 네트워크에 의한 유도전동기 궤적의 학습에 관한 연구)

  • Yang, Seung-Ho;Kim, Sei-Chan;Kim, Duk-Hun;Yoo, Dong-Wook;Won, Chung-Yuen
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.331-333
    • /
    • 1994
  • A learning method for induction motor trajectory using neuro-fuzzy networks (NFN) based on fusion of fuzzy logic theory and neural networks is proposed. The premise and consequent parameters of the NFN affecting the controllers performances are modified during the learning stages by the proposed learning method to implement an optimal controller only with pre-determined target trajectory and the least amount of knowledge about an induction motor. The induction motor position control system is simulated to verify the effectiveness of the learned NF controller(NFC). The simulation results shows that the proposed learning method has good dynamic performance and small steady state error.

  • PDF

A Study on The Neural Network Controller using Relative Gain Matrix Technique (상대이득 행렬 기법을 이용한 신경망 제어기 설계에 관한 연구)

  • Seo, Ho-Joon;Seo, Sam-Jun;Kim, Dong-Sik;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.606-608
    • /
    • 1997
  • In this paper, Neuro-Fuzzy Controller(NFC), a fuzzy system realized using a neural network, is to adopt for the multivariable system. In the multivariable system, the interactive effects between the variables should be taken into account. A simple compensator, using the steady-state information can be obtained for open-loop stable systems, is presented to cope with this problem. However, it should be supposed that the plant is unknown to the control system designer, but an estimate of the DC gain has been obtained by carrying out experiments on the plant. Also, if the variables are not combinated completely, it is difficult to design the controller. Therefore, we design a neuro-fuzzy controller which controls a multivariable system with only input output informations, and compare its performance with that of a PI controller. In the proposed controller, the construction of the membership functions and rule base, which is highly heuristic, can be achieved using a training process. This allows the combination of knowledge of human experts and evidence from input-output data.

  • PDF

Fuzzy-Neural Control for Speed Control and estimation of SPMSM drive (SPMSM 드라이브의 속도제어 및 추정을 위한 퍼지-뉴로 제어)

  • Nam Su-Myeong;Lee Jung-Chul;Lee Hong-Gyun;Lee Young-Sil;Park Bung-Sang;Chung Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1251-1253
    • /
    • 2004
  • This paper is proposed a fuzzy neural network controller based on the vector controlled surface permanent magnet synchronous motor(SPMSM) drive system. The hybrid combination of neural network and fuzzy control will produce a powerful representation flexibility and numerical processing capability. Also, this paper is proposed speed control of SPMSM using neuro-fuzzy control(NFC) and estimation of speed using artificial neural network(ANN) Controller. The back propagation neural network technique is used to provide a real time adaptive estimation of the motor speed. The error between the desired state variable and the actual one is back-propagated to adjust the rotor speed, so that the actual state variable will coincide with the desired one. The back propagation mechanism is easy to derive and the estimated speed tracks precisely the actual motor speed. This paper is proposed the theoretical analysis as well as the simulation results to verify the effectiveness of the new method.

  • PDF