• Title/Summary/Keyword: Neuro-fuzzy control

Search Result 202, Processing Time 0.023 seconds

Neuro-Fuzzy Observer Design for Speed control of AC Servo Motor (교류 서보 전동기의 속도제어를 위한 뉴로-퍼지 관측기설계)

  • Ban, Gi-Jong;Choi, Sung-Dai;Yoon, Kwang-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.170-173
    • /
    • 2005
  • This paper presents an Fuzzy-Neuro Observer system for an ac servo motor dirve to track periodic commands using a neuro-fuzzy observer. AC servo motor drive system is rather similar to a linear system. However, the uncertainties, such as machanical parametric variation, external disturbance, uncertainty due to nonideal in transient state. therefore an intelligent control system that isan on-line trained neural network controller with adaptive learning rates.

  • PDF

A Comparison of Different Intelligent Control Techniques For a PM dc Motor

  • Amer S. I.;Salem M. M.
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • This paper presents the application of a simple neuro-based speed control scheme of a permanent magnet (PM) dc motor. To validate its efficiency, the performance characteristics of the proposed simple neuro-based scheme are compared with those of a Neural Network controller and those of a Fuzzy Logic controller under different operating conditions. The comparative results show that the simple neuro-based speed control scheme is robust, accurate and insensitive to load disturbances.

Numerical Study of Hybrid Base-isolator with Magnetorheological Damper and Friction Pendulum System (MR 감쇠기와 FPS를 이용한 하이브리드 면진장치의 수치해석적 연구)

  • Kim, Hyun-Su;Roschke, P.N.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.2 s.42
    • /
    • pp.7-15
    • /
    • 2005
  • Numerical analysis model is proposed to predict the dynamic behavior of a single-degree-of-freedom structure that is equipped with hybrid base isolation system. Hybrid base isolation system is composed of friction pendulum systems (FPS) and a magnetorheological (MR) damper. A neuro-fuzzy model is used to represent dynamic behavior of the MR damper. Fuzzy model of the MR damper is trained by ANFIS (Adaptive Neuro-Fuzzy Inference System) using various displacement, velocity, and voltage combinations that are obtained from a series of performance tests. Modelling of the FPS is carried out with a nonlinear analytical equation that is derived in this study and neuro-fuzzy training. Fuzzy logic controller is employed to control the command voltage that is sent to MR damper. The dynamic responses of experimental structure subjected to various earthquake excitations are compared with numerically simulated results using neuro-fuzzy modeling method. Numerical simulation using neuro-fuzzy models of the MR damper and FPS predict response of the hybrid base isolation system very well.

High Performance Control of IPMSM using Fuzzy-Neuro SV-PWM (퍼지-뉴로 SV-PWM을 이용한 IPMSM의 고성능 제어)

  • Kim, Do-Yeon;Ko, Jae-Sub;Choi, Jung-Sik;Jung, Byung-Jin;Jung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.311-314
    • /
    • 2008
  • This paper is proposed a high performance speed con01 of the Interior Permanent Magnet Synchronous Motor through the Fuzzy-Neuro SV-PWM, SV-PWM is controlled using Fuzzy-Neuro control. SV-PWM can be maximum used maximum dc link voltage and is excellent control method due to characteristic to reducing harmonic more than others. The hybrid combination of fuzzy control and neural network will produce a powerful representation flexibility and numerical processing capability. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

Design of a Neuro-Euzzy Controller for Hydraulic Servo Systems (유압서보 시스템을 위한 뉴로-퍼지 제어기 설계)

  • 김천호;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.101-111
    • /
    • 1993
  • Many processes such as machining, injection-moulding and metal-forming are usually operated by hydraulic servo-systems. The dynamic characteristics of these systems are complex and highly non-linear and are often subjected to the uncertain external disturbances associated with the processes. Consequently, the conventional approach to the controller design for these systems may not guarantee accurate tracking control performance. An effective neuro-fuzzy controller is proposed to realize an accurate hydraulic servo-system regardless of the uncertainties and the external disturbances. For this purpose, first, we develop a simplified fuzzy logic controller which have multidimensional and unsymmetric membership functions. Secondly, we develop a neural network which consists of the parameters of the fuzzy logic controller. It is show that the neural network has both learning capability and linguistic representation capability. The proposed controller was implemented on a hydraulic servo-system. Feedback error learning architecture is adopted which uses the feedback error directly without passing through the dynamics or inverse transfer function of the hydraulic servo-system to train the neuro-fuzzy controller. A series of simulations was performed for the position-tracking control of the system subjected to external disturbances. The results of simulations show that regardless of inherent non-linearities and disturbances, an accuracy tracking-control performance is obtained using the proposed neuro-fuzzy controller.

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대 이득 행렬을 이용한 뉴로-퍼지 제어기의 설계)

  • Seo Sam-Jun;Kim Dongwon;Park Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.24-29
    • /
    • 2005
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. However, among the input/output variables which arc not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by the introduction of a neuro-fuzzy controller using relative gain matrix. This proposed neuro-fuzzy controller automatically adjusts the mutual coupling weight between variables using a neural network which is realized by back-propagation algorithm. The good performance of the proposed nero-fuzzy controller is verified through computer simulations on 200MW boiler systems.

Speed Control of AC Servo Motor with Loads Using Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 부하를 갖는 교류 서보 전동기의 속도제어)

  • Gang, Yeong-Ho;Kim, Nak-Gyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.8
    • /
    • pp.352-359
    • /
    • 2002
  • A neuro-fuzzy controller has some problems that he difficulty of tuning up the membership function and fuzzy rules, long time of inferencing and defuzzifying compare to PID. Also, the fuzzy controller's own defect as a PD controller has. In this study, it is proposed two methods to solve these problems. The first method is that inner fuzzy rules are tuned up automatically by the back propagation learning according to error patterns. And the second method is a new type defuzzification method that shorten the calculation time of an inferencing and a defuzzifying. In this study, it is designed the new type neuro-fuzzy controller that improves the fast response and the stability of a system by using the proposed methods. And, the designed controller is named EPLNFC(Error pattern Learning Neuro-Fuzzy Controller). To evaluate the fast response and the stability of EPLNFC designed in this study, EPLNFC is applied to a speed control of a DC motor and AC motor.

Design of A Neuro-Fuzzy Controller for Speed Control Applied to AC Servo Motor (AC 서보 모터의 속도 제어를 위한 뉴로-퍼지 제어기 설계)

  • Ku, Ja-Yl;Kim, Sang-Hun
    • 전자공학회논문지 IE
    • /
    • v.47 no.3
    • /
    • pp.26-34
    • /
    • 2010
  • In this study, a neuro-fuzzy controller based on the characteristics of fuzzy controlling and structure of artificial neural networks(ANN). This neuro-fuzzy controller has each advantage from fuzzy and ANN, respectively. Plus, it can handle their own shortcomings and parameters in the controller can be tuned by on-line. To verify the proposed controller, it has applied to the AC servo motor which is popular item in robot control field. General PID and fuzzy controller are also applied to the same motor so stability and good characteristic of the proposed controller are compared and proved. Especially, the experiment for variable load is investigated and performance result is proved also.

Design of IMC for Nonlinear Systems by Using Adaptive Neuro-Fuzzy Inference System (뉴로 퍼지 시스템을 이용한 비선형 시스템의 IMC 제어기 설계)

  • Kim, Sung-Ho;Kang, Jung-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.958-961
    • /
    • 2001
  • Control of Industrial processes is very difficult due to nonlinear dynamics, effect of disturbances and modeling errors. M.Morari proposed Internal Model Control(IMC) system that can be effectively applied to the systems with model uncertainties and time delays. The advantage of IMC is their robustness with respect to a model mismatch and disturbances. But it is difficult to apply for nonlinear systems. ANFIS(Adaptive Neuro-Fuzzy Inference System) which contains multiple linear models as consequent part is used to model nonlinear systems. Generally, the linear parameters in ANFIS can be effectively utilized to control a nonlinear systems. In this paper, we propose new ANFIS-based IMC controller for nonlinear systems. Numerical simulation results show that the proposed control scheme has good performances.

  • PDF

A Development of the Inference Algorithm for Bead Geometry in the GMA Welding Using Neuro-fuzzy Algorithm (Neuro-Fuzzy 기법을 이용한 GMA 용접의 비드 형상에 대한 기하학적 추론 알고리듬 개발)

  • Kim, Myun-Hee;Bae, Joon-Young;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.310-316
    • /
    • 2003
  • One of the significant subject in the automatic arc welding is to establish control system of the welding parameters for controlling bead geometry as a criterion to evaluate the quality of arc welding. This paper proposes an inference algorithm for bead geometry in CMA Welding using Neuro-Fuzzy algorithm. The characteristic welding parameters are measured by the circuit composed of hall sensor, voltage divider tachometer, etc. and then the bead geometry of each weld pool is calculated and detected by an image processing with CCD camera and a measuring with microscope. The relationships between the characteristic welding parameters and the bead geometry have been arranged empirically. From the result of experiments, membership functions and fuzzy rules are tuned and determined by the learning of neural network, and then the relationship between actual bead geometry and inferred bead geometry are concluded by fuzzy logic controller. In the applied inference system of bead geometry using Neuro-Fuzzy algorithm, the inference error percent is within -5%∼+4% in case of bead width, -10%∼+10% in bead height, -5%∼+6% in bead area, -10%∼+10% in penetration. Use of the Neuro-Fuzzy algorithm allows the CMA Welding system to evaluate the quality in bead geometry in real time as the welding parameters change.