• 제목/요약/키워드: Neuro-fuzzy algorithm

검색결과 197건 처리시간 0.023초

Neuro-fuzzy based approach for estimation of concrete compressive strength

  • Xue, Xinhua;Zhou, Hongwei
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.697-703
    • /
    • 2018
  • Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

상대이득행렬을 이용한 뉴로 퍼지 제어기의 설계 (Design of Neuro-Fuzzy Controller using Relative Gain Matrix)

  • 서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.157-157
    • /
    • 2000
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. The concept of relative gain matrix is used to obtain the input-output pairs. However, among the input/output variables which are not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by tile introduction of a simple compensator. This compensator adjusts the degree of coupling between variables using a neural network. In this proposed neuro-fuzzy controller, the Neural network which is realized by back-propagation algorithm, adjusts the mutual coupling weight between variables.

  • PDF

An Adaptive Input Data Space Parting Solution to the Synthesis of N euro- Fuzzy Models

  • Nguyen, Sy Dzung;Ngo, Kieu Nhi
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권6호
    • /
    • pp.928-938
    • /
    • 2008
  • This study presents an approach for approximation an unknown function from a numerical data set based on the synthesis of a neuro-fuzzy model. An adaptive input data space parting method, which is used for building hyperbox-shaped clusters in the input data space, is proposed. Each data cluster is implemented here as a fuzzy set using a membership function MF with a hyperbox core that is constructed from a min vertex and a max vertex. The focus of interest in proposed approach is to increase degree of fit between characteristics of the given numerical data set and the established fuzzy sets used to approximate it. A new cutting procedure, named NCP, is proposed. The NCP is an adaptive cutting procedure using a pure function $\Psi$ and a penalty function $\tau$ for direction the input data space parting process. New algorithms named CSHL, HLM1 and HLM2 are presented. The first new algorithm, CSHL, built based on the cutting procedure NCP, is used to create hyperbox-shaped data clusters. The second and the third algorithm are used to establish adaptive neuro- fuzzy inference systems. A series of numerical experiments are performed to assess the efficiency of the proposed approach.

합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계 (Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent)

  • 한창욱;이돈규
    • 정보처리학회 논문지
    • /
    • 제13권2호
    • /
    • pp.13-17
    • /
    • 2024
  • 본 논문에서는 규칙의 수를 줄여 간결한 지식 기반을 보장할 수 있는 합 기반의 전건부를 가지는 뉴로-퍼지 제어기를 제안하였다. 제안된 뉴로-퍼지 제어기는 모든 입력 변수의 AND 조합을 전건부로 하는 구조의 퍼지 규칙보다 더 큰 입력 영역을 커버하기 위해 전건부에 입력 퍼지 집합의 합집합 연산을 허용하였다. 이러한 뉴로-퍼지 제어기를 구성하기 위해 본 논문에서는 OR 및 AND 퍼지 뉴런으로 구성된 multiple-term unified logic processor (MULP)를 고려하였다. 이러한 OR 및 AND 퍼지 뉴런은 조정 가능한 연결 강도 집합을 가지므로 학습을 통하여 최적의 연결 강도 집합을 찾을 수 있다. 초기 최적화 단계에서 유전 알고리즘은 제안된 뉴로 퍼지 제어기의 최적화된 이진 구조를 구성하고, 이후 확률에 기반한 강화 학습은 성능 지수를 더욱 향상시켜서 유전 알고리즘에 의해 최적화된 제어기의 이진 연결을 개선하였다. 역진자 시스템을 제어하기 위한 모의실험 및 실험을 통해 제안된 방법의 유효성을 검증하였다.

Generalized Fuzzy Modeling

  • Hwang, Hee-Soo;Joo, Young-Hoon;Woo, Kwang-Bang
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1993년도 Fifth International Fuzzy Systems Association World Congress 93
    • /
    • pp.1145-1150
    • /
    • 1993
  • In this paper, two methods of fuzzy modeling are prsented to describe the input-output relationship effectively based on relation characteristics utilizing simplified reasoning and neuro-fuzzy reasoning. The methods of modeling by the simplified reasoning and the neuro-fuzzy reasoning are used when the input-output relation of a system is 'crisp' and 'fuzzy', respectively. The structure and the parameter identification in the modeling method by the simplified reasoning are carried out by means of FCM clustering and the proposed GA hybrid scheme, respectively. The structure and the parameter identification in the modeling method by the neuro-fuzzy reasoning are carried out by means of GA and BP algorithm, respectively. The feasibility of the proposed methods are evaluated through simulation.

  • PDF

Application of neuro-fuzzy algorithm to portable dynamic positioning control system for ships

  • Fang, Ming-Chung;Lee, Zi-Yi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권1호
    • /
    • pp.38-52
    • /
    • 2016
  • This paper describes the nonlinear dynamic motion behavior of a ship equipped with a portable dynamic positioning (DP) control system, under external forces. The waves, current, wind, and drifting forces were considered in the calculations. A self-tuning controller based on a neuro-fuzzy algorithm was used to control the rotation speed of the outboard thrusters for the optimal adjustment of the ship position and heading and for path tracking. Time-domain simulations for ship motion with six degrees of freedom with the DP system were performed using the fourth-order RungeeKutta method. The results showed that the path and heading deviations were within acceptable ranges for the control method used. The portable DP system is a practical alternative for ships lacking professional DP facilities.

상수처리 수질제어를 위한 약품주입 자동연산 (Optimum chemicals dosing control for water treatment)

  • 하대원;고택범;황희수;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.772-777
    • /
    • 1993
  • This paper presents a neuro-fuzzy modelling method that determines chemicals dosing model based on historical operation data for effective water quality control in water treatment system and calculates automatically the amount of optimum chemicals dosing against the changes of raw water qualities and flow rate. The structure identification in the modelling by means of neuro-fuzzy reasing is performed by Genetic Algorithm(GA) and Complex Method in which the numbers of hidden layer and its hidden nodes, learning rate and connection pattern between input layer and output layer are identified. The learning network is implemented utilizing Back Propagation(BP) algorithm. The effectiveness of the proposed modelling scheme and the feasibility of the acquired neuro-fuzzy network is evaluated through computer simulation for chemicals dosing control in water treatment system.

  • PDF

Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification

  • Hakim, S.J.S.;Razak, H. Abdul
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.779-802
    • /
    • 2013
  • In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) techniques are developed and applied to identify damage in a model steel girder bridge using dynamic parameters. The required data in the form of natural frequencies are obtained from experimental modal analysis. A comparative study is made using the ANNs and ANFIS techniques and results showed that both ANFIS and ANN present good predictions. However the proposed ANFIS architecture using hybrid learning algorithm was found to perform better than the multilayer feedforward ANN which learns using the backpropagation algorithm. This paper also highlights the concept of ANNs and ANFIS followed by the detail presentation of the experimental modal analysis for natural frequencies extraction.

뉴로-퍼지를 이용한 플라이휠 제어에 관한 연구 (Control of Magnetic Flywheel System by Neuro-Fuzzy Logic)

  • 양원석;김영배
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.90-97
    • /
    • 2005
  • Magnetic flywheel system utilizes a magnetic bearing, which is able to support the shaft without mechanical contacts, and also it is able to control rotational vibration. Magnetic flywheel system is composed of position sensors, a digital controller, actuating amplifiers, an electromagnet and a flywheel. This work applies the neuro-fuzzy control algorithm to control the vibration of a magnetic flywheel system. It proposes the design skill of an optimal controller when the system has structured uncertainty and unstructured uncertainty, i.e. it has a difficulty in extracting the exact mathematical model. Inhibitory action of vibration was verified at the specified rotating speed. Unbalance response, a serious problem in rotating machinery, is improved by using a magnetic bearing with neuro-fuzzy algorithm.

계층적 클러스터링과 Gaussian Mixture Model을 이용한 뉴로-퍼지 모델링 (A Neuro-Fuzzy Modeling using the Hierarchical Clustering and Gaussian Mixture Model)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회논문지
    • /
    • 제13권5호
    • /
    • pp.512-519
    • /
    • 2003
  • 본 논문에서는 계층적 클러스터링과 GMM을 순차적으로 이용하여 최적의 파라미터를 추정하고 이를 뉴로-퍼지 모델의 초기 파리미터로 사용하여 모델의 성능 개선을 제안한다. 반복적인 시도 중 가장 좋은 파라미터를 선택하는 기존의 알고리즘 과 달리 계층적 클러스터링은 데이터들 간의 유클리디언 거리를 이용하여 클러스터를 생성하므로 반복적인 시도가 불필요하다. 또한 클러스터링 방법에 의해 퍼지 모델링을 행하므로 클러스터와 동일한 갯수의 적은 규칙을 갖는다. 제안된 방법의 유용함을 비선형 데이터인 Box-Jenkins의 가스로 예측 문제와 Sugeno의 비선형 시스템에 적용하여 이전의 연구보다 적은 규칙으로도 성능이 개선되는 것을 보였다.