• 제목/요약/키워드: Neuro-dynamic technique

검색결과 12건 처리시간 0.02초

뉴로 다이나믹 기법이 만성 뇌졸중 환자의 균형과 보행에 미치는 즉각적 영향 (The Immediate Effect of Neuro-Dynamics Technique on Balance and Gait in Chronic Stroke Patients)

  • 정주리;양영식;박재명
    • 대한정형도수물리치료학회지
    • /
    • 제22권1호
    • /
    • pp.27-34
    • /
    • 2016
  • Background: The purpose of this study was to investigate the immediate effects of neuro-dynamics technique (NDT) to the balance and gait for chronic stroke patients. Methods: This study was composed of the cross-sectional design. Nine patients with chronic stroke applied to NDT. Balance ability function was measured using the Good Balance System device for static balance, timed up and go test (TUG) and functional reach test (FRT) for dynamic balance. The 10 meter walk test (10MWT) and GAITRite device were used for measurement of gait ability for patients. Results: There were significant improvements were observed on dynamic balance ability (p<.05) and gait ability function (p<.05). Conclusions: This research shows that the NDT is immediate effective on dynamic balance and gait ability of the chronic stroke patients. Further studies may be needed to continuously intervention of NDT for more patients.

  • PDF

헬리콥터 자세제어를 위한 뉴로 퍼지 제어기의 설계에 관한 연구 (A Study on Design of Neuro- Fuzzy Controller for Attitude Control of Helicopter)

  • 최용선;임태우;장경원;안태천
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2283-2285
    • /
    • 2001
  • This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.

  • PDF

2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계 (Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권2호
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

Crack Identification Using Neuro-Fuzzy-Evolutionary Technique

  • Shim, Mun-Bo;Suh, Myung-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제16권4호
    • /
    • pp.454-467
    • /
    • 2002
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. Toidentifythelocation and depth of a crack in a structure, a method is presented in this paper which uses neuro-fuzzy-evolutionary technique, that is, Adaptive-Network-based Fuzzy Inference System (ANFIS) solved via hybrid learning algorithm (the back-propagation gradient descent and the least-squares method) and Continuous Evolutionary Algorithms (CEAs) solving sir ale objective optimization problems with a continuous function and continuous search space efficiently are unified. With this ANFIS and CEAs, it is possible to formulate the inverse problem. ANFIS is used to obtain the input(the location and depth of a crack) - output(the structural Eigenfrequencies) relation of the structural system. CEAs are used to identify the crack location and depth by minimizing the difference from the measured frequencies. We have tried this new idea on beam structures and the results are promising.

뉴로-퍼지 알고리즘을 이용한 점용접재의 강도추론 기술 (The Quality Assurance Technique of Resistance Spot Welding Pieces using Neuro-Fuzzy Algorithm)

  • 김주석;주연준;이상룡
    • 한국정밀공학회지
    • /
    • 제16권10호
    • /
    • pp.141-151
    • /
    • 1999
  • The resistance Spot Welding is widely used in the field of assembling the plates. However we don't still have any satisfactory solution, which is non-destructive quality evaluation in real-time or on-line, against it. Moreover, even though the rate of welding under the condition of expulsion has been high until now, quality control of welding against expulsion hasn't still been established. In this paper, it was proposed on the quality assurance technique of resistance spot welding pieces using Neuro-Fuzzy algorithm. Four parameters from electrode separation signal in the case of non-expulsion, and dynamic resistance patterns in the case of expulsion are selected as fuzzy input parameters. The parameters consist of Fuzzy Inference System are determined through Neuro-Learning algorithm. And then, fuzzy Inference System is constructed. It was confirmed that the fuzzy inference values of strength have within ${\pm}$4% error specimen in comparison with real strength for the total strength range, and the specimen percent having within ${\pm}$1% error was 88.8%. According to KS(Korean Industrial Standard), tensile-shear strength limit for electric coated of zinc is 400kgf/mm2. Judging to the quality of welding is good or bad, according to this criterion and the results of inference, the probability of misjudgement that good quality is valuated into poor one was 0.43%, on contrary it was 2.59%. Finally, the proposed Neuro-Fuzzy Inference System can infer the tensile-shear strength of resistance spot welding pieces with high performance for all cases-non-expulsion and expulsion. And On-Line Welding Quality Inspection System will be realized sooner or later.

  • PDF

Effect of Neuro Dynamic Technique and Instrument Assisted Soft Tissue Mobilization on Lower Extremity Muscle Tone, Stiffness, Static Balance in Stroke Patients

  • Kim, Myeong-Jun;Kim, Tae-Ho
    • The Journal of Korean Physical Therapy
    • /
    • 제32권6호
    • /
    • pp.359-364
    • /
    • 2020
  • Purpose: This study was undertaken to compare the efficacy of instrument assisted soft tissue mobilization (IASTM) and a neural dynamic technique (NDYT). As an intervention to treat spastic lower limb muscle tone, stiffness, and static balance in stroke patients. Methods: Totally, 26 participants were assigned randomly to two groups: the IASTM (n=13) and NDYT (n=13) groups. Both groups were subjected to their respective technique for 15 minutes, 5 times a week, for 6 weeks. Muscle tone, stiffness, and static balance were evaluated before and after training, to compare both group changes. Results: IASTM group showed significant decrease in the gastrocnemius medial region and semitendinosus muscle tone and stiffness (p<0.05) compare to NDYT group; however, no significant different was observed in static balance between groups (p>0.05). Conclusion: The results suggest that IASTM is an effective method for decreasing the muscle tone and stiffness in acute stroke patients.

인공신경망 기법과 유전자 기법을 혼합한 결함인식 연구 (Crack Identification Using Hybrid Neuro-Genetic Technique)

  • 서명원;심문보
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.158-165
    • /
    • 1999
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a method is presented in this paper which uses hybrid neuro-genetic technique. Feed-forward multilayer neural networks trained by back-propagation are used to learn the input)the location and dept of a crack)-output(the structural eigenfrequencies) relation of the structural system. With this neural network and genetic algorithm, it is possible to formulate the inverse problem. Neural network training algorithm is the back propagation algorithm with the momentum method to attain stable convergence in the training process and with the adaptive learning rate method to speed up convergence. Finally, genetic algorithm is used to fine the minimum square error.

  • PDF

적응 다항식 뉴로-퍼지 네트워크 구조에 관한 연구 (A Study on the Adaptive Polynomial Neuro-Fuzzy Networks Architecture)

  • 오성권;김동원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권9호
    • /
    • pp.430-438
    • /
    • 2001
  • In this study, we introduce the adaptive Polynomial Neuro-Fuzzy Networks(PNFN) architecture generated from the fusion of fuzzy inference system and PNN algorithm. The PNFN dwells on the ideas of fuzzy rule-based computing and neural networks. Fuzzy inference system is applied in the 1st layer of PNFN and PNN algorithm is employed in the 2nd layer or higher. From these the multilayer structure of the PNFN is constructed. In order words, in the Fuzzy Inference System(FIS) used in the nodes of the 1st layer of PNFN, either the simplified or regression polynomial inference method is utilized. And as the premise part of the rules, both triangular and Gaussian like membership function are studied. In the 2nd layer or higher, PNN based on GMDH and regression polynomial is generated in a dynamic way, unlike in the case of the popular multilayer perceptron structure. That is, the PNN is an analytic technique for identifying nonlinear relationships between system's inputs and outputs and is a flexible network structure constructed through the successive generation of layers from nodes represented in partial descriptions of I/O relatio of data. The experiment part of the study involves representative time series such as Box-Jenkins gas furnace data used across various neurofuzzy systems and a comparative analysis is included as well.

  • PDF

전력계통의 안정도 향상을 위한 적응 뉴로-퍼지 전 보상기 설계 (Design of Adaptive Neuro- Fuzzy Precompensator for Enhancement of Power System Stability)

  • 정형환;정문규;이정필;이준탁
    • 조명전기설비학회논문지
    • /
    • 제15권4호
    • /
    • pp.14-22
    • /
    • 2001
  • 본 논문에서는 전력계통의 저주파 진동 억제와 안정도 향상을 위해 적응 뉴로-퍼지 전 보상기(Adaptive Neuro-Fuzzy Precompensator, ANFP)를 설계하였다. 여기서 ANFP는 종래의 전력계통 안정화 장치(Power System Stabilizer, PSS)를 보상하도록 설계되며, 이 설계기법은 기존의 PSS 최적 파라미터를 구하는 방식과는 달리 현재 사용중인 PSS 파라미터를 고정시켜놓고, ANFP만을 추가하는 구조적인 장점을 나타낸다. 먼저, 학습 능력을 가지는 퍼지 전 보상기가 구성되며, 이는 발전 유니트의 입출력 데이터로부터 학습된다. ANFP는 학습의 특성을 가지기 때문에 보상기의 퍼지규칙과 소속함수는 학습 알고리즘에 의해 자동으로 동조될 수 있다 학습은 ANFP와 목표 제어기(desired controller)의 출력을 비교하여 평가되는 오차를 최소화하도록 수행된다. 사례 연구 들에서 다양한 동작 조건들 상에서 전력계통의 우수한 제동을 제공할 수 있었으며, 시스템의 동특성을 향상시킬 수 있었다

  • PDF

신경회로망 기반 자동 동조 뉴로-퍼지 PID 제어기 설계 (The Design of Auto Tuning Neuro-Fuzzy PID Controller Based Neural Network)

  • 김영식;이창구
    • 한국산학기술학회논문지
    • /
    • 제7권5호
    • /
    • pp.830-836
    • /
    • 2006
  • 본 논문에서는 기존의 PID 제어기와 퍼지 제어기의 특성을 공통으로 갖는 새로운 형태의 신경회로망 기반 자동 동조 뉴로-퍼지 PID제어기를 제안하였다. 제안된 제어기는 퍼지의 선형성을 이용하여 퍼지 PID 제어기의 퍼지 연산부를 간략화 시키고 일반 PID 제어기와 유사한 입출력 특성을 갖도록 하였으며 비선형 성분 보상을 위하여 제어기 출력에 가장 큰 영향을 미치는 출력측 스케일 계수를 단일 신경 회로망 구조로 변경하고 PID 제어기 구조를 유지하게 하였다. 또한 단일 신경 회로망 구조를 이용함으로써 신경회로망의 초기 연결강도와 계산량에 대한 문제점을 해결하고 오차의 부호 정보에 따라 학습계수를 변화시키는 가변 학습계수 역전파 알고리즘을 사용하여 오버 슈트가 작으면서도 빠른 수렴 속도를 갖도록 하였다. 제안된 제어기를 비선형성이 강한 시스템으로 알려진 자기 부양(magnetic levitation) 시스템에 실제 적용하여 본 논문에서 제안한 제어기의 우수한 성능을 확인하였다.

  • PDF