• Title/Summary/Keyword: Neuro-Fuzzy algorithm

Search Result 197, Processing Time 0.026 seconds

Neuro-fuzzy based approach for estimation of concrete compressive strength

  • Xue, Xinhua;Zhou, Hongwei
    • Computers and Concrete
    • /
    • v.21 no.6
    • /
    • pp.697-703
    • /
    • 2018
  • Compressive strength is one of the most important engineering properties of concrete, and testing of the compressive strength of concrete specimens is often costly and time consuming. In order to provide the time for concrete form removal, re-shoring to slab, project scheduling and quality control, it is necessary to predict the concrete strength based upon the early strength data. However, concrete compressive strength is affected by many factors, such as quality of raw materials, water cement ratio, ratio of fine aggregate to coarse aggregate, age of concrete, compaction of concrete, temperature, relative humidity and curing of concrete. The concrete compressive strength is a quite nonlinear function that changes depend on the materials used in the concrete and the time. This paper presents an adaptive neuro-fuzzy inference system (ANFIS) for the prediction of concrete compressive strength. The training of fuzzy system was performed by a hybrid method of gradient descent method and least squares algorithm, and the subtractive clustering algorithm (SCA) was utilized for optimizing the number of fuzzy rules. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed ANFIS model. Further, predictions from three models (the back propagation neural network model, the statistics model, and the ANFIS model) were compared with the experimental data. The results show that the proposed ANFIS model is a feasible, efficient, and accurate tool for predicting the concrete compressive strength.

Design of Neuro-Fuzzy Controller using Relative Gain Matrix (상대이득행렬을 이용한 뉴로 퍼지 제어기의 설계)

  • 서삼준;김동식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.157-157
    • /
    • 2000
  • In the fuzzy control for the multi-variable system, it is difficult to obtain the fuzzy rule. Therefore, the parallel structure of the independent single input-single output fuzzy controller using a pairing between the input and output variable is applied to the multi-variable system. The concept of relative gain matrix is used to obtain the input-output pairs. However, among the input/output variables which are not paired the interactive effects should be taken into account. these mutual coupling of variables affect the control performance. Therefore, for the control system with a strong coupling property, the control performance is sometimes lowered. In this paper, the effect of mutual coupling of variables is considered by tile introduction of a simple compensator. This compensator adjusts the degree of coupling between variables using a neural network. In this proposed neuro-fuzzy controller, the Neural network which is realized by back-propagation algorithm, adjusts the mutual coupling weight between variables.

  • PDF

An Adaptive Input Data Space Parting Solution to the Synthesis of N euro- Fuzzy Models

  • Nguyen, Sy Dzung;Ngo, Kieu Nhi
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.6
    • /
    • pp.928-938
    • /
    • 2008
  • This study presents an approach for approximation an unknown function from a numerical data set based on the synthesis of a neuro-fuzzy model. An adaptive input data space parting method, which is used for building hyperbox-shaped clusters in the input data space, is proposed. Each data cluster is implemented here as a fuzzy set using a membership function MF with a hyperbox core that is constructed from a min vertex and a max vertex. The focus of interest in proposed approach is to increase degree of fit between characteristics of the given numerical data set and the established fuzzy sets used to approximate it. A new cutting procedure, named NCP, is proposed. The NCP is an adaptive cutting procedure using a pure function $\Psi$ and a penalty function $\tau$ for direction the input data space parting process. New algorithms named CSHL, HLM1 and HLM2 are presented. The first new algorithm, CSHL, built based on the cutting procedure NCP, is used to create hyperbox-shaped data clusters. The second and the third algorithm are used to establish adaptive neuro- fuzzy inference systems. A series of numerical experiments are performed to assess the efficiency of the proposed approach.

Design of a Neuro-Fuzzy System Using Union-Based Rule Antecedent (합 기반의 전건부를 가지는 뉴로-퍼지 시스템 설계)

  • Chang-Wook Han;Don-Kyu Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.2
    • /
    • pp.13-17
    • /
    • 2024
  • In this paper, union-based rule antecedent neuro-fuzzy controller, which can guarantee a parsimonious knowledge base with reduced number of rules, is proposed. The proposed neuro-fuzzy controller allows union operation of input fuzzy sets in the antecedents to cover bigger input domain compared with the complete structure rule which consists of AND combination of all input variables in its premise. To construct the proposed neuro-fuzzy controller, we consider the multiple-term unified logic processor (MULP) which consists of OR and AND fuzzy neurons. The fuzzy neurons exhibit learning abilities as they come with a collection of adjustable connection weights. In the development stage, the genetic algorithm (GA) constructs a Boolean skeleton of the proposed neuro-fuzzy controller, while the stochastic reinforcement learning refines the binary connections of the GA-optimized controller for further improvement of the performance index. An inverted pendulum system is considered to verify the effectiveness of the proposed method by simulation and experiment.

Generalized Fuzzy Modeling

  • Hwang, Hee-Soo;Joo, Young-Hoon;Woo, Kwang-Bang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1145-1150
    • /
    • 1993
  • In this paper, two methods of fuzzy modeling are prsented to describe the input-output relationship effectively based on relation characteristics utilizing simplified reasoning and neuro-fuzzy reasoning. The methods of modeling by the simplified reasoning and the neuro-fuzzy reasoning are used when the input-output relation of a system is 'crisp' and 'fuzzy', respectively. The structure and the parameter identification in the modeling method by the simplified reasoning are carried out by means of FCM clustering and the proposed GA hybrid scheme, respectively. The structure and the parameter identification in the modeling method by the neuro-fuzzy reasoning are carried out by means of GA and BP algorithm, respectively. The feasibility of the proposed methods are evaluated through simulation.

  • PDF

Application of neuro-fuzzy algorithm to portable dynamic positioning control system for ships

  • Fang, Ming-Chung;Lee, Zi-Yi
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.38-52
    • /
    • 2016
  • This paper describes the nonlinear dynamic motion behavior of a ship equipped with a portable dynamic positioning (DP) control system, under external forces. The waves, current, wind, and drifting forces were considered in the calculations. A self-tuning controller based on a neuro-fuzzy algorithm was used to control the rotation speed of the outboard thrusters for the optimal adjustment of the ship position and heading and for path tracking. Time-domain simulations for ship motion with six degrees of freedom with the DP system were performed using the fourth-order RungeeKutta method. The results showed that the path and heading deviations were within acceptable ranges for the control method used. The portable DP system is a practical alternative for ships lacking professional DP facilities.

Optimum chemicals dosing control for water treatment (상수처리 수질제어를 위한 약품주입 자동연산)

  • 하대원;고택범;황희수;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.772-777
    • /
    • 1993
  • This paper presents a neuro-fuzzy modelling method that determines chemicals dosing model based on historical operation data for effective water quality control in water treatment system and calculates automatically the amount of optimum chemicals dosing against the changes of raw water qualities and flow rate. The structure identification in the modelling by means of neuro-fuzzy reasing is performed by Genetic Algorithm(GA) and Complex Method in which the numbers of hidden layer and its hidden nodes, learning rate and connection pattern between input layer and output layer are identified. The learning network is implemented utilizing Back Propagation(BP) algorithm. The effectiveness of the proposed modelling scheme and the feasibility of the acquired neuro-fuzzy network is evaluated through computer simulation for chemicals dosing control in water treatment system.

  • PDF

Adaptive Neuro Fuzzy Inference System (ANFIS) and Artificial Neural Networks (ANNs) for structural damage identification

  • Hakim, S.J.S.;Razak, H. Abdul
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.779-802
    • /
    • 2013
  • In this paper, adaptive neuro-fuzzy inference system (ANFIS) and artificial neural networks (ANNs) techniques are developed and applied to identify damage in a model steel girder bridge using dynamic parameters. The required data in the form of natural frequencies are obtained from experimental modal analysis. A comparative study is made using the ANNs and ANFIS techniques and results showed that both ANFIS and ANN present good predictions. However the proposed ANFIS architecture using hybrid learning algorithm was found to perform better than the multilayer feedforward ANN which learns using the backpropagation algorithm. This paper also highlights the concept of ANNs and ANFIS followed by the detail presentation of the experimental modal analysis for natural frequencies extraction.

Control of Magnetic Flywheel System by Neuro-Fuzzy Logic (뉴로-퍼지를 이용한 플라이휠 제어에 관한 연구)

  • Yang Won-Seok;Kim Young-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.90-97
    • /
    • 2005
  • Magnetic flywheel system utilizes a magnetic bearing, which is able to support the shaft without mechanical contacts, and also it is able to control rotational vibration. Magnetic flywheel system is composed of position sensors, a digital controller, actuating amplifiers, an electromagnet and a flywheel. This work applies the neuro-fuzzy control algorithm to control the vibration of a magnetic flywheel system. It proposes the design skill of an optimal controller when the system has structured uncertainty and unstructured uncertainty, i.e. it has a difficulty in extracting the exact mathematical model. Inhibitory action of vibration was verified at the specified rotating speed. Unbalance response, a serious problem in rotating machinery, is improved by using a magnetic bearing with neuro-fuzzy algorithm.

A Neuro-Fuzzy Modeling using the Hierarchical Clustering and Gaussian Mixture Model (계층적 클러스터링과 Gaussian Mixture Model을 이용한 뉴로-퍼지 모델링)

  • Kim, Sung-Suk;Kwak, Keun-Chang;Ryu, Jeong-Woong;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.512-519
    • /
    • 2003
  • In this paper, we propose a neuro-fuzzy modeling to improve the performance using the hierarchical clustering and Gaussian Mixture Model(GMM). The hierarchical clustering algorithm has a property of producing unique parameters for the given data because it does not use the object function to perform the clustering. After optimizing the obtained parameters using the GMM, we apply them as initial parameters for Adaptive Network-based Fuzzy Inference System. Here, the number of fuzzy rules becomes to the cluster numbers. From this, we can improve the performance index and reduce the number of rules simultaneously. The proposed method is verified by applying to a neuro-fuzzy modeling for Box-Jenkins s gas furnace data and Sugeno's nonlinear system, which yields better results than previous oiles.