• Title/Summary/Keyword: Neuro-Fuzzy algorithm

Search Result 197, Processing Time 0.026 seconds

Training Algorithms of Neuro-fuzzy Systems Using Evolution Strategy (진화전략을 이용한 뉴로퍼지 시스템의 학습방법)

  • 정성훈
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.173-176
    • /
    • 2001
  • This paper proposes training algorithms of neuro-fuzzy systems. First, we introduce a structure training algorithm, which produces the necessary number of hidden nodes from training data. From this algorithm, initial fuzzy rules are also obtained. Second, the parameter training algorithm using evolution strategy is introduced. In order to show their usefulness, we apply our neuro-fuzzy system to a nonlinear system identification problem. It was found from experiments that proposed training algorithms works well.

  • PDF

A New Learning Algorithm for Neuro-Fuzzy Modeling Using Self-Constructed Clustering

  • Kim, Sung-Suk;Kwak, Keun-Chang;Kim, Sung-Soo;Ryu, Jeong-Woong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1254-1259
    • /
    • 2005
  • In this paper, we proposed a learning algorithm for the neuro-fuzzy modeling using a learning rule to adapt clustering. The proposed algorithm includes the data partition, assigning the rule into the process of partition, and optimizing the parameters using predetermined threshold value in self-constructing algorithm. In order to improve the clustering, the learning method of neuro-fuzzy model is extended and the learning scheme has been modified such that the learning of overall model is extended based on the error-derivative learning. The effect of the proposed method is presented using simulation compare with previous ones.

  • PDF

A Fuzzy Rule Extraction by EM Algorithm and A Design of Temperature Control System (EM 알고리즘에 의한 퍼지 규칙생성과 온도 제어 시스템의 설계)

  • 오범진;곽근창;유정웅
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.104-111
    • /
    • 2002
  • This paper presents a fuzzy rule extraction method using EM(Expectation-Maximization) algorithm and a design method of adaptive neuro-fuzzy control. EM algorithm is used to estimate a maximum likelihood of a GMM(Gaussian Mixture Model) and cluster centers. The estimated clusters is used to automatically construct the fuzzy rules and membership functions for ANFIS(Adaptive Neuro-Fuzzy Inference System). Finally, we applied the proposed method to the water temperature control system and obtained better results with respect to the number of rules and SAE(Sum of Absolute Error) than previous techniques such as conventional fuzzy controller.

Neuro-Fuzzy Control of Inverted Pendulum System for Intelligent Control Education

  • Lee, Geun-Hyung;Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.4
    • /
    • pp.309-314
    • /
    • 2009
  • This paper presents implementation of the adaptive neuro-fuzzy control method. Control performance of the adaptive neuro-fuzzy control method for a popular inverted pendulum system is evaluated. The inverted pendulum system is designed and built as an education kit for educational purpose for engineering students. The educational kit is specially used for intelligent control education. Control purpose is to satisfy balancing angle and desired trajectory tracking performance. The adaptive neuro-fuzzy controller has the Takagi-Sugeno(T-S) fuzzy structure. Back-propagation algorithm is used for updating weights in the fuzzy control. Control performances of the inverted pendulum system by PID control method and the adaptive neuro-fuzzy control method are compared. Control hardware of a DSP 2812 board is used to achieve the real-time control performance. Experimental studies are conducted to show successful control performances of the inverted pendulum system by the adaptive neuro-fuzzy control method.

Design of Neuro-Fuzzy Controller for Speed Control Applied to DC Servo Motor (직류시보전동기의 속도제어를 위한 뉴로-퍼지 제어기 설계)

  • Kim, Sang-Hoon;Kang, Young-Ho;Ko, Bong-Woon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.48-54
    • /
    • 2002
  • In this study, a neuro-fuzzy controller which has the characteristic of fuzzy control and artificial neural network is designed. A fuzzy rule to be applied is automatically selected by the allocated neurons. The neurons correspond to fuzzy rules are created by an expert. To adapt the more precise model is implemented by error back-propagation learning algorithm to adjust the link-weight of fuzzy membership function in the neuro-fuzzy controller. The more classified fuzzy rule is used to include the property of dual mode method. In order to verify the effectiveness of the proposed algorithm designed above, an operating characteristic of a DC servo motor with variable load is investigated.

Sensorless MPPT Control of a Grid-Connected Wind Power System Using a Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 계통연계형 풍력발전 시스템의 센서리스 MPPT 제어)

  • Lee, Hyun-Hee;Choi, Dae-Keun;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.484-493
    • /
    • 2011
  • The MPPT algorithm using neuro-fuzzy controller is proposed to improve the performance of fuzzy controller in this paper. The width of membership function and fuzzy rule have an effect on the performance of fuzzy controller. The neuro-fuzzy controller has the response characteristic which is superior to the existing fuzzy controller, because of using the optimal width of the fuzzy membership function through the neural learning. The superior control characteristic of a proposed algorithm is confirmed through simulation and experiment results.

Design of an Adaptive Neuro-Fuzzy Inference Precompensator for Load Frequency Control of Two-Area Power Systems (2지역 전력계통의 부하주파수 제어를 위한 적응 뉴로 퍼지추론 보상기 설계)

  • 정형환;정문규;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.72-81
    • /
    • 2000
  • In this paper, we design an adaptive neuro-fuzzy inference system(ANFIS) precompensator for load frequency control of 2-area power systems. While proportional integral derivative (PID) controllers are used in power systems, they may have some problems because of high nonlinearities of the power systems. So, a neuro-fuzzy-based precompensation scheme is incorporated with a convectional PID controller to obtain robustness to the nonlinearities. The proposed precompensation technique can be easily implemented by adding a precompensator to an existing PID controller. The applied neruo-fuzzy inference system precompensator uses a hybrid learning algorithm. This algorithm is to use both a gradient descent method to optimize the premise parameters and a least squares method to solve for the consequent parameters. Simulation results show that the proposed control technique is superior to a conventional Ziegler-Nichols PID controller in dynamic responses about load disturbances.

  • PDF

A Study on Design of Neuro- Fuzzy Controller for Attitude Control of Helicopter (헬리콥터 자세제어를 위한 뉴로 퍼지 제어기의 설계에 관한 연구)

  • Choi, Yong-Sun;Lim, Tae-Woo;Jang, Gung-Won;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2283-2285
    • /
    • 2001
  • This paper proposed to a neural network based fuzzy control (neuro-fuzzy control) technique for attitude control of helicopter with strongly dynamic nonlinearities and derived a helicopter aerodynamic torque equation of helicopter and the force balance equation. A neuro-fuzzy system is a feedforward network that employs a back-propagation algorithm for learning purpose. A neuro-fuzzy system is used to identify nonlinear dynamic systems. Hence, this paper presents methods for the design of a neural network(NN) based fuzzy controller(that is, neuro-fuzzy control) for a helicopter of nonlinear MIMO systems. The proposed neuro-fuzzy control determined to a input-output membership function in fuzzy control and neural networks constructed to improve through learning of input-output membership functions determined in fuzzy control.

  • PDF

Tuning Fuzzy Rules Based on Additive-Type Fuzzy System Models

  • Shi, Yan;Mizumoto, Masaharu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.387-390
    • /
    • 1998
  • In this paper, we suggested a neuro-fuzzy learning algorithm for tuning fuzzy rules, in which a fuzzy system model is of additive-type. Using the method, it is possible to reduce the computation size, since performing the fuzzy inference and tuning the fuzzy rules of each fuzzy subsystem model are independent. Moreover, the efficiency of suggested method is shown by means of a numerical example.

  • PDF

Structure Identification of a Neuro-Fuzzy Model Can Reduce Inconsistency of Its Rulebase

  • Wang, Bo-Hyeun;Cho, Hyun-Joon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.276-283
    • /
    • 2007
  • It has been shown that the structure identification of a neuro-fuzzy model improves their accuracy performances in a various modeling problems. In this paper, we claim that the structure identification of a neuro-fuzzy model can also reduce the degree of inconsistency of its fuzzy rulebase. Thus, the resulting neuro-fuzzy model serves as more like a structured knowledge representation scheme. For this, we briefly review a structure identification method of a neuro-fuzzy model and propose a systematic method to measure inconsistency of a fuzzy rulebase. The proposed method is applied to problems or fuzzy system reproduction and nonlinear system modeling in order to validate our claim.