• Title/Summary/Keyword: Neuro-2A cells

Search Result 84, Processing Time 0.196 seconds

Effects of MeOH Extract from Stem Bark of Plantocracy strobilacea on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (화향수(化香樹) 수피(樹皮)의 메탄올 추출물이 신경세포에서 아밀로이드 전구단백질의 대사에 미치는 영향)

  • Jiang, Gui Bao;Leem, Jae Yoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.57-62
    • /
    • 2013
  • Alzheimer's disease (AD), one of the most common forms of dementia, is characterized pathologically by the presence of intracellular neurofibrillary tangles and deposition of ${\beta}$-amyloid ($A{\beta}$) peptides of 40-42 residues, which are generated by processing of amyloid precursor protein (APP). $A{\beta}$ has been believed to be neurotoxic and now is also considered to have a role on the mechanism of memory dysfunction. Here, we show that MeOH extract from stem bark of Platycarya strobilacea Sieb. et. Zucc. (PSM) affects on the processing of APP from the APPswe over-expressing Neuro2a cell line. We found that PSM may regulate the processing of APP and increase the sAPP${\alpha}$. PSM does not change the protein level of presenilin and nicastrin, however, it reduces the protein expression level of BACE1. In addition, PSM reduces the secretion level of $A{\beta}42$ and $A{\beta}40$ from the cell line without toxicity. We suggest that Platycarya strobilacea may be useful as a herbal medicine to treat Alzheimer's disease.

Late Passage Cultivation Induces Aged Astrocyte Phenotypes in Rat Primary Cultured Cells

  • Bang, Minji;Gonzales, Edson Luck;Shin, Chan Young;Kwon, Kyoung Ja
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.144-153
    • /
    • 2021
  • Astrocytes play various important roles such as maintaining brain homeostasis, supporting neurons, and secreting inflammatory mediators to protect the brain cells. In aged subjects, astrocytes show diversely changed phenotypes and dysfunctions. But, the study of aged astrocytes or astrocytes from aged subjects is not yet sufficient to provide a comprehensive understanding of their important processes in the regulation of brain function. In this study, we induced an in vitro aged astrocyte model through late passage cultivation of rat primary cultured astrocytes. Astrocytes were cultured until passage 7 (P7) as late passage astrocytes and compared with passage 1 (P1) astrocytes as early passage astrocytes to confirm the differences in phenotypes and the effects of serial passage. In this study, we confirmed the morphological, molecular, and functional changes of late passage astrocytes showing aging phenotypes through SA-β-gal staining and measurement of nuclear size. We also observed a reduced expression of inflammatory mediators including IL-1β, IL-6, TNFα, iNOS, and COX2, as well as dysregulation of wound-healing, phagocytosis, and mitochondrial functions such as mitochondrial membrane potential and mitochondrial oxygen consumption rate. Culture-conditioned media obtained from P1 astrocytes promoted neurite outgrowth in immature primary cultures of rat cortices, which is significantly reduced when we treated the immature neurons with the culture media obtained from P7 astrocytes. These results suggest that late passage astrocytes show senescent astrocyte phenotypes with functional defects, which makes it a suitable model for the study of the role of astrocyte senescence on the modulation of normal and pathological brain aging.

Spinosin Inhibits Aβ1-42 Production and Aggregation via Activating Nrf2/HO-1 Pathway

  • Zhang, Xiaoying;Wang, Jinyu;Gong, Guowei;Ma, Ruixin;Xu, Fanxing;Yan, Tingxu;Wu, Bo;Jia, Ying
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2020
  • The present research work primarily investigated whether spinosin has the potential of improving the pathogenesis of Alzheimer's disease (AD) driven by β-amyloid (Aβ) overproduction through impacting the procession of amyloid precursor protein (APP). Wild type mouse Neuro-2a cells (N2a/WT) and N2a stably expressing human APP695 (N2a/APP695) cells were treated with spinosin for 24 h. The levels of APP protein and secreted enzymes closely related to APP procession were examined by western blot analysis. Oxidative stress related proteins, such as nuclear factor-erythroid 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) were detected by immunofluorescence assay and western blot analysis, respectively. The intracellular reactive oxygen species (ROS) level was analyzed by flow cytometry, the levels of Aβ1-42 were determined by ELISA kit, and Thioflavin T (ThT) assay was used to detect the effect of spinosin on Aβ1-42 aggregation. The results showed that ROS induced the expression of ADAM10 and reduced the expression of BACE1, while spinosin inhibited ROS production by activating Nrf2 and up-regulating the expression of HO-1. Additionally, spinosin reduced Aβ1-42 production by impacting the procession of APP. In addition, spinosin inhibited the aggregation of Aβ1-42. In conclusion, spinosin reduced Aβ1-42 production by activating the Nrf2/HO-1 pathway in N2a/WT and N2a/APP695 cells. Therefore, spinosin is expected to be a promising treatment of AD.

Comparison of brain wave values in emotional analysis using video (영상을 이용한 감정분석에서의 뇌파 수치 비교)

  • Jae-Hyun Jo;Sang-Sik Lee;Jee-Hun Jang;Jin-Hyoung Jeong
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.519-525
    • /
    • 2023
  • The human brain constantly emits electrical impulses, which is called brain waves, and brain waves can be defined as the electrical activity of the brain generated by the flow of ions generated by the biochemical interaction of brain cells. There is a study that emotion is one of the factors that can cause stress. Brain waves are the most used in the study of emotions. This paper is a study on whether emotions affect stress, and showed two images of fear and joy to four experimenters and divided them into three stages before, during, and after watching. As a measurement tool, brain waves at the positions of Fp1 and Fp2 were measured using the NeuroBrain System, a system that can automate brain wave measurement, analysis, brain wave reinforcement, and suppression training with remote control. After obtaining the brain wave data for each emotion, the average value was calculated and the study was conducted. As for the frequency related to stress, the values of Alpha and SMR, Low Beta, and High Beta were analyzed. Brainwave analysis affects stress depending on the emotional state, and "fear" emotions cause anxiety by raising Beta levels, resulting in higher Mind Stress levels, while "joy" emotions lower Beta levels, resulting in a significant drop in Mind Stress.

MiR-144-3p and Its Target Gene β-Amyloid Precursor Protein Regulate 1-Methyl-4-Phenyl-1,2-3,6-Tetrahydropyridine-Induced Mitochondrial Dysfunction

  • Li, Kuo;Zhang, Junling;Ji, Chunxue;Wang, Lixuan
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.543-549
    • /
    • 2016
  • MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. The present study focused on the role of hsa-miR-144-3p in one of the neuro-degenerative diseases, Parkinson's disease (PD). Our study showed a remarkable down-regulation of miR-144-3p expression in 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-treated SH-SY5Y cells. MiR-144-3p was then overexpressed and silenced in human SH-SY5Y cells by miRNA-mimics and miRNA-inhibitor transfections, respectively. Furthermore, ${\beta}$-amyloid precursor protein (APP) was identified as a target gene of miR-144-3p via a luciferase reporter assay. We found that miR-144-3p overexpression significantly inhibited the protein expression of APP. Since mitochondrial dysfunction has been shown to be one of the major pathological events in PD, we also focused on the role of miR-144-3p and APP in regulating mitochondrial functions. Our study demonstrated that up-regulation of miR-144-3p increased expression of the key genes involved in maintaining mitochondrial function, including peroxisome proliferator-activated receptor ${\gamma}$ coactivator-$1{\alpha}$(PGC-$1{\alpha}$), nuclear respiratory factor 1 (NRF-1) and mitochondrial transcription factor A (TFAM). Moreover, there was also a significant increase in cellular ATP, cell viability and the relative copy number of mtDNA in the presence of miR-144-3p overexpression. In contrast, miR-144-3p silencing showed opposite effects. We also found that APP overexpression significantly decreased ATP level, cell viability, the relative copy number of mtDNA and the expression of these three genes, which reversed the effects of miR-144-3p overexpression. Taken together, these results show that miR-144-3p plays an important role in maintaining mitochondrial function, and its target gene APP is also involved in this process.

The Mechanism of Lotus Root Extract (LRE) as Neuro-Protective Effect in Alzheimer Disease (AD) (연근(蓮根)의 신경 보호 효과 및 기전연구)

  • Hong, Seung-Chul;Lee, Chia-Hung;Kim, Sang-Heon;Lee, Jin-Hee;Koo, Byung-Soo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.24 no.3
    • /
    • pp.309-320
    • /
    • 2013
  • Objectives : There is a possibility LRE as remedy in Alzheimer disease (AD), but it's nerve protection effect and mechanism have to be elucidate. In this research, we applied LRE on $A{\beta}_{25-35}$ pre-treated SH-SY5Y cells, to find out the nerve protection effect and mechanism in AD cell model. Methods : We tried to confirm that effect by experimenting with 20, 50, and $100{\mu}g/ml$ concentration of LRE as a medicine. Next experiment, we assessed damage effect which induced $A{\beta}_{25-35}$, known to cause AD, on SH-SY5Y cell. In addition, cellular viability test is executed under $H_2O_2$ treatment condition in a SH-SY5Y cell. Results : 1. In $A{\beta}_{25-35}$ treated SH-SY5Y cell, LRE exhibited an anti-phosphorylation effect about tau protein, JNK, and IKB. 2. LRE prevent nerve cell apoptosis, which indued $A{\beta}_{25-35}$ and oxidative stress, modify JNK engaged synaptic structure and $NF{\kappa}B$ induced p75-neurotrophin receptor polymorphism. Conclusions : We found that LRE prevented oxidative stress-induced cellular destruction, for example, increased SOD activity of $A{\beta}_{25-35}$ treated SH-SY5Y cell and reduced toxicity of oxygen free radical. Consequently, the ingredients of LRE have a role as a catalyzer for $A{\beta}_{25-35}$ clearance and as scavenger for active oxygen free radical.

The Effects of MeOH Extract of Hopea chinensis (Merr.) Hand.-Mazz. on the Metabolism of Amyloid Precursor Protein in Neuroblastoma Cells (Hopea chinensis (Merr.) Hand.-Mazz. 메탄올 추출물이 신경세포에서 아밀로이드 전구 단백질 대사에 미치는 영향)

  • Chandra, Shrestha Abinash;Kim, Ju Eun;Ham, Ha Neul;Jo, Youn Jeong;Bach, Tran The;Eum, Sang Mi;Leem, Jae Yoon
    • Korean Journal of Pharmacognosy
    • /
    • v.49 no.2
    • /
    • pp.182-187
    • /
    • 2018
  • Many plant derived phytochemicals have been considered as the main therapeutic strategy against Alzheimer's disease (AD). AD is a progressive neurodegenerative disorder, and the most predominant cause of dementia in the elderly. Cholinergic deficit, senile plaque/${\beta}$-amyloid ($A{\beta}$) peptide deposition and oxidative stress have been identified as three main pathogenic pathways which contribute to the progression of AD. We screened many different plant species for their effective use in both modern and traditional system of medicines. In this study, we tested that MeOH extract of the stem bark of Hopea chinensis (Merr.) Hand.-Mazz. (HCM) affects on the processing of Amyloid precursor portein (APP) from the APPswe over-expressing Neuro2a cell line. We showed that HCM reduced the secretion level of $A{\beta}42$ and $A{\beta}40$ in a dose dependent manner. We found that HCM increased over 1.5 folds of the secretion level of $sAPP{\alpha}$, a metabolite of ${\alpha}$-secretase. Furthermore, we found that HCM inhibited acetylcholinesterase activity in vitro. We suggest that the stem bark of Hopea chinensis may be a useful source to develop a therapeutics for AD.

Long-Term Follow-Up Result of Hydroxyurea Chemotherapy for Recurrent Meningiomas

  • Kim, Min-Su;Yu, Dong-Woo;Jung, Young-Jin;Kim, Sang Woo;Chang, Chul-Hoon;Kim, Oh-Lyong
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.6
    • /
    • pp.517-522
    • /
    • 2012
  • Objective : Meningiomas represent 18-20% of all intracranial tumors and have a 20-50% 10-year recurrence rate, despite aggressive surgery and irradiation. Hydroxyurea, an inhibitor of ribonucleotide reductase, is known to inhibit meningioma cells by induction of apoptosis. We report the long-term follow-up result of hydroxyurea therapy in the patients with recurrent meningiomas. Methods : Thirteen patients with recurrent WHO grade I or II meningioma were treated with hydroxyurea (1000 $mg/m^2/day$ orally divided twice per day) from June 1998 to February 2012. Nine female and 4 male, ranging in age from 32 to 83 years (median age 61.7 years), were included. Follow-up assessment included physical examination, computed tomography, and magnetic resonance imaging (MRI). Standard neuro-oncological response criteria (Macdonald criteria) were used to evaluate the follow-up MRI scans. The treatment was continued until there was objective disease progression or onset of unmanageable toxicity. Results : Ten of the 13 patients (76.9%) showed stable disease after treatment, with time to progression ranging from 8 to 128 months (median 72.4 months; 6 patients still accruing time). However, there was no complete response or partial response in any patients. Three patients had progressive disease after 88, 89, 36 months, respectively. There was no severe (Grade III-IV) blood systemic disorders and no episodes of non-hematological side effects. Conclusion : This study showed that hydroxyurea is a modestly active agent against recurrent meningiomas and can induce long-term stabilization of disease in some patients. We think that hydroxyurea treatment is well tolerated and convenient, and could be considered as an alternative treatment option in patients with recurrent meningiomas prior to reoperation or radiotherapy.

Antioxidant and Neuroprotective Effects of Green Tea Seed Shell Ethanol Extracts (녹차씨껍질 에탄올 추출물의 항산화 활성 및 신경세포 보호 효과)

  • Sung, Nak-Yun;Song, Hayeon;Ahn, Dong-Hyun;Yoo, Yung-Choon;Byun, Eui-Baek;Jang, Beom-Su;Park, Chulhwan;Park, Won-Jong;Byun, Eui-Hong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.7
    • /
    • pp.958-965
    • /
    • 2016
  • The objective of this study was to evaluate the antioxidant activity of green tea seed shell as an industrial byproduct. Green tea seed shell extract (GTSSE) was obtained by ethanol extraction, and the yield was $1.4{\pm}0.22%$. The radical scavenging activities [1,1-diphenyl-picrylhydrazyl and 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)], xanthine oxidase inhibition activity, and reducing power of GTSSE dose-dependently increased. To estimate the neuroprotective effect of GTSSE, viability was tested in HT22 mouse hippocampal cells. GTSSE treatment induced cytotoxicity at a concentration higher than $100{\mu}g/mL$ but not at a concentration lower than $50{\mu}g/mL$. Using this optimal concentration range, GTSSE treatment significantly increased cell viability in $H_2O_2$-treated HT22 cells. Further, GTSSE treatment increased superoxide dismutase activity and decreased the malonaldehyde level, a product of lipid peroxidation, in HT22 cells. Therefore, these results indicate that green tea seed shell extract may be useful for the development of antioxidant materials and have potential activity to prevent and treat neuro-degenerative diseases such as Alzheimer's disease.

Effect of Ethanol on the PKC Isozyme Activities in B103 Neuroblastoma Cells (에탄올이 신경아세포종 B103세포의 Protein Kinase C Isozyme 활성에 미치는 영향)

  • 조효정;정영진;진승하;오우균;김상원;강은정;박진규
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.262-270
    • /
    • 2004
  • It is well known that long-term heavy ethanol intake causes alcoholic dementia, cerebellar degeneracy or Wernicke-Korsakoff syndrome and aggravates the conditions of many other neuro-psychotic disorders. Recently it is indicated that protein kinase C (PKC) plays an important role in the action of ethanol and in the neuro-adaptational mechanisms under chronic ethanol exposure. In order to investigate the effect of ethanol on PKC isoforms levels within the range of not showing any cytotoxicity, B103 neuroblastoma cell line trans-formed from murine central nervous system was employed and western blot analysis was carried out by using PKC isoform-specific antibodies. The changes of PKC-$\alpha$, ${\gamma}$, $\varepsilon$ and ζ level in the range of ethanol concentration 50∼200 mM were examined at the exposure time 1, 2, 8, 18 and 24 hrs in both cytosolic and membrane fraction. A typical ethanol concentration inducing the PKC isozymes was 100 mM, and the transforming time ranges of PKC isozymes could be considered as two different parts to each PKC isoform such as initial (0∼2 hrs) and prolonged (8∼24 hrs) stages. PKC-${\gamma}$ and PKC-$\varepsilon$ were clearly induced during the prolonged stages in cytosol at 18 hrs, and membrane fraction at 8 hrs and 18 hrs, respectively. On the other hand the PKC-$\alpha$ and PKC-ζ isozymes were largely induced in the prolonged stages at 18 hrs and 24 hrs, where the PKC-$\alpha$ isozyme was induced in both cytosol and membrane fractions at 200 mM ethanol concentration while the PKC-ζ isozyme was induced only in the membrane fractions at 100,200 mM. At 200 mM ethanol concentration of 24 hrs incubation in the prolonged stage, the PKC-$\alpha$ was maximally induced by 150% of the control values whereas the PKC-${\gamma}$ was significantly decreased to 47% of the control values. These results suggest that 100∼200 mM ethanol may modulate the signal transduction and neurotransmitter release in the central nervous system through the regulation of PKC isozymes, and the action of these isoforms may act differently each other in the cell.