Browse > Article
http://dx.doi.org/10.4062/biomolther.2020.175

Late Passage Cultivation Induces Aged Astrocyte Phenotypes in Rat Primary Cultured Cells  

Bang, Minji (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
Gonzales, Edson Luck (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
Shin, Chan Young (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
Kwon, Kyoung Ja (Department of Neuroscience, School of Medicine and Center for Neuroscience Research, Konkuk University)
Publication Information
Biomolecules & Therapeutics / v.29, no.2, 2021 , pp. 144-153 More about this Journal
Abstract
Astrocytes play various important roles such as maintaining brain homeostasis, supporting neurons, and secreting inflammatory mediators to protect the brain cells. In aged subjects, astrocytes show diversely changed phenotypes and dysfunctions. But, the study of aged astrocytes or astrocytes from aged subjects is not yet sufficient to provide a comprehensive understanding of their important processes in the regulation of brain function. In this study, we induced an in vitro aged astrocyte model through late passage cultivation of rat primary cultured astrocytes. Astrocytes were cultured until passage 7 (P7) as late passage astrocytes and compared with passage 1 (P1) astrocytes as early passage astrocytes to confirm the differences in phenotypes and the effects of serial passage. In this study, we confirmed the morphological, molecular, and functional changes of late passage astrocytes showing aging phenotypes through SA-β-gal staining and measurement of nuclear size. We also observed a reduced expression of inflammatory mediators including IL-1β, IL-6, TNFα, iNOS, and COX2, as well as dysregulation of wound-healing, phagocytosis, and mitochondrial functions such as mitochondrial membrane potential and mitochondrial oxygen consumption rate. Culture-conditioned media obtained from P1 astrocytes promoted neurite outgrowth in immature primary cultures of rat cortices, which is significantly reduced when we treated the immature neurons with the culture media obtained from P7 astrocytes. These results suggest that late passage astrocytes show senescent astrocyte phenotypes with functional defects, which makes it a suitable model for the study of the role of astrocyte senescence on the modulation of normal and pathological brain aging.
Keywords
Astrocytes; Late passage cultivation; Cellular senescence; Neuro-inflammatory response; Phagocytosis; Wound healing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sochocka, M., Sobczynski, M., Sender-Janeczek, A., Zwolinska, K., Blachowicz, O., Tomczyk, T., Zietek, M. and Leszek, J. (2017) Association between periodontal health status and cognitive abilities. The role of cytokine profile and systemic inflammation. Curr. Alzheimer Res. 14, 978-990.
2 Wagner, W., Bork, S., Horn, P., Krunic, D., Walenda, T., Diehlmann, A., Benes, V., Blake, J., Huber, F. X., Eckstein, V., Boukamp, P. and Ho, A. D. (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS ONE 4, e5846.   DOI
3 Wittko, I. M., Schanzer, A., Kuzmichev, A., Schneider, F. T., Shibuya, M., Raab, S. and Plate, K. H. (2009) VEGFR-1 regulates adult olfactory bulb neurogenesis and migration of neural progenitors in the rostral migratory stream in vivo. J. Neurosci. 29, 8704-8714.   DOI
4 Dossi, E., Vasile, F. and Rouach, N. (2018) Human astrocytes in the diseased brain. Brain Res. Bull. 136, 139-156.   DOI
5 Eckman, E. A., Reed, D. K. and Eckman, C. B. (2001) Degradation of the Alzheimer's amyloid beta peptide by endothelin-converting enzyme. J. Biol. Chem. 276, 24540-24548.   DOI
6 Eckman, E. A., Watson, M., Marlow, L., Sambamurti, K. and Eckman, C. B. (2003) Alzheimer's disease beta-amyloid peptide is increased in mice deficient in endothelin-converting enzyme. J. Biol. Chem. 278, 2081-2084.   DOI
7 Enokido, Y., Yoshitake, A., Ito, H. and Okazawa, H. (2008) Age-dependent change of HMGB1 and DNA double-strand break accumulation in mouse brain. Biochem. Biophys. Res. Commun. 376, 128-133.   DOI
8 Fulop, T., Le Page, A., Fortin, C., Witkowski, J. M., Dupuis, G. and Larbi, A. (2014) Cellular signaling in the aging immune system. Curr. Opin. Immunol. 29, 105-111.   DOI
9 Evans, R. J., Wyllie, F. S., Wynford-Thomas, D., Kipling, D. and Jones, C. J. (2003) A P53-dependent, telomere-independent proliferative life span barrier in human astrocytes consistent with the molecular genetics of glioma development. Cancer Res. 63, 4854-4861.
10 Frankel, D., Mehindate, K. and Schipper, H. M. (2000) Role of heme oxygenase-1 in the regulation of manganese superoxide dismutase gene expression in oxidatively-challenged astroglia. J. Cell. Physiol. 185, 80-86.   DOI
11 Gerland, L. M., Peyrol, S., Lallemand, C., Branche, R., Magaud, J. P. and Ffrench, M. (2003) Association of increased autophagic inclusions labeled for beta-galactosidase with fibroblastic aging. Exp. Gerontol. 38, 887-895.   DOI
12 Golomb, L., Sagiv, A., Pateras, I. S., Maly, A., Krizhanovsky, V., Gorgoulis, V. G., Oren, M. and Ben-Yehuda, A. (2015) Age-associated inflammation connects RAS-induced senescence to stem cell dysfunction and epidermal malignancy. Cell Death Differ. 22, 1764-1774.   DOI
13 Bhaumik, D., Scott, G. K., Schokrpur, S., Patil, C. K., Orjalo, A. V., Rodier, F., Lithgow, G. J. and Campisi, J. (2009) MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany N.Y.) 1, 402-411.   DOI
14 Wong, C. and Goldstein, D. R. (2013) Impact of aging on antigen presentation cell function of dendritic cells. Curr. Opin. Immunol. 25, 535-541.   DOI
15 Yan, P., Hu, X., Song, H., Yin, K., Bateman, R. J., Cirrito, J. R., Xiao, Q., Hsu, F. F., Turk, J. W., Xu, J., Hsu, C. Y., Holtzman, D. M. and Lee, J. M. (2006) Matrix metalloproteinase-9 degrades amyloidbeta fibrils in vitro and compact plaques in situ. J. Biol. Chem. 281, 24566-24574.   DOI
16 Bang, M., Kim, D. G., Gonzales, E. L., Kwon, K. J. and Shin, C. Y. (2019a) Etoposide induces mitochondrial dysfunction and cellular senescence in primary cultured rat astrocytes. Biomol. Ther. (Seoul) 27, 530-539.   DOI
17 Bang, M., Ryu, O., Kim, D. G., Mabunga, D. F., Cho, K. S., Kim, Y., Han, S. H., Kwon, K. J. and Shin, C. Y. (2019b) Tenovin-1 induces senescence and decreases wound-healing activity in cultured rat primary astrocytes. Biomol. Ther. (Seoul) 27, 283-289.   DOI
18 Bhat, R., Crowe, E. P., Bitto, A., Moh, M., Katsetos, C. D., Garcia, F. U., Johnson, F. B., Trojanowski, J. Q., Sell, C. and Torres, C. (2012) Astrocyte senescence as a component of Alzheimer's disease. PLoS ONE 7, e45069.   DOI
19 Blasko, I., Stampfer-Kountchev, M., Robatscher, P., Veerhuis, R., Eikelenboom, P. and Grubeck-Loebenstein, B. (2004) How chronic inflammation can affect the brain and support the development of Alzheimer's disease in old age: the role of microglia and astrocytes. Aging Cell 3, 169-176.   DOI
20 Blomquist, E., Westermark, B. and Ponten, J. (1980) Ageing of human glial cells in culture: increase in the fraction of non-dividers as demonstrated by a minicloning technique. Mech. Ageing Dev. 12, 173-182.   DOI
21 Boraschi, D. and Italiani, P. (2014) Immunosenescence and vaccine failure in the elderly: strategies for improving response. Immunol. Lett. 162, 346-353.   DOI
22 Burda, J. E., Bernstein, A. M. and Sofroniew, M. V. (2016) Astrocyte roles in traumatic brain injury. Exp. Neurol. 275 Pt 3, 305-315.   DOI
23 Zhu, L., Yu, J., Shi, Q., Lu, W., Liu, B., Xu, S., Wang, L., Han, J. and Wang, X. (2011) Strain- and age-related alteration of proteins in the brain of SAMP8 and SAMR1 mice. J. Alzheimers Dis. 23, 641-654.   DOI
24 Yin, K. J., Cirrito, J. R., Yan, P., Hu, X., Xiao, Q., Pan, X., Bateman, R., Song, H., Hsu, F. F., Turk, J., Xu, J., Hsu, C. Y., Mills, J. C., Holtzman, D. M. and Lee, J. M. (2006) Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J. Neurosci. 26, 10939-10948.   DOI
25 Yoon, K. B., Park, K. R., Kim, S. Y. and Han, S. Y. (2016) Induction of nuclear enlargement and senescence by sirtuin inhibitors in glioblastoma cells. Immune. Netw. 16, 183-188.   DOI
26 Yu, Z., Yi, M., Wei, T., Gao, X. and Chen, H. (2017) KCa3.1 inhibition switches the astrocyte phenotype during astrogliosis associated with ischemic stroke via endoplasmic reticulum stress and MAPK signaling pathways. Front. Cell. Neurosci. 11, 319.
27 Grolleau-Julius, A., Harning, E. K., Abernathy, L. M. and Yung, R. L. (2008) Impaired dendritic cell function in aging leads to defective antitumor immunity. Cancer Res. 68, 6341-6349.   DOI
28 Green, S. J., Mellouk, S., Hoffman, S. L., Meltzer, M. S. and Nacy, C. A. (1990) Cellular mechanisms of nonspecific immunity to intracellular infection: cytokine-induced synthesis of toxic nitrogen oxides from L-arginine by macrophages and hepatocytes. Immunol. Lett. 25, 15-19.   DOI
29 Abbott, N. J. (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J. Anat. 200, 629-638.   DOI
30 Acosta, C., Anderson, H. D. and Anderson, C. M. (2017) Astrocyte dysfunction in Alzheimer disease. J. Neurosci. Res. 95, 2430-2447.   DOI
31 Halle, A., Hornung, V., Petzold, G. C., Stewart, C. R., Monks, B. G., Reinheckel, T., Fitzgerald, K. A., Latz, E., Moore, K. J. and Golenbock, D. T. (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857-865.   DOI
32 Hayflick, L. and Moorhead, P. S. (1961) The serial cultivation of human diploid cell strains. Exp. Cell Res. 25, 585-621.   DOI
33 Hong, S. H., Lee, M. H., Koo, M. A., Seon, G. M., Park, Y. J., Kim, D. and Park, J. C. (2019) Stem cell passage affects directional migration of stem cells in electrotaxis. Stem Cell Res. 38, 101475.   DOI
34 Hou, J., Cui, C., Kim, S., Sung, C. and Choi, C. (2018) Ginsenoside F1 suppresses astrocytic senescence-associated secretory phenotype. Chem. Biol. Interact. 283, 75-83.   DOI
35 Hsu, J. Y., Bourguignon, L. Y., Adams, C. M., Peyrollier, K., Zhang, H., Fandel, T., Cun, C. L., Werb, Z. and Noble-Haeusslein, L. J. (2008) Matrix metalloproteinase-9 facilitates glial scar formation in the injured spinal cord. J. Neurosci. 28, 13467-13477.   DOI
36 Izadpanah, R., Kaushal, D., Kriedt, C., Tsien, F., Patel, B., Dufour, J. and Bunnell, B. A. (2008) Long-term in vitro expansion alters the biology of adult mesenchymal stem cells. Cancer Res. 68, 4229-4238.   DOI
37 Jung, Y. J. and Chung, W. S. (2018) Phagocytic roles of glial cells in healthy and diseased brains. Biomol. Ther. (Seoul) 26, 350-357.   DOI
38 Campisi, J., Andersen, J. K., Kapahi, P. and Melov, S. (2011) Cellular senescence: a link between cancer and age-related degenerative disease? Semin. Cancer Biol. 21, 354-359.   DOI
39 Lee, B. Y., Han, J. A., Im, J. S., Morrone, A., Johung, K., Goodwin, E. C., Kleijer, W. J., DiMaio, D. and Hwang, E. S. (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187-195.   DOI
40 Li, Y. N., Pan, R., Qin, X. J., Yang, W. L., Qi, Z., Liu, W. and Liu, K. J. (2014) Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J. Neurochem. 129, 120-129.   DOI
41 Campuzano, O., Castillo-Ruiz, M. M., Acarin, L., Castellano, B. and Gonzalez, B. (2009) Increased levels of proinflammatory cytokines in the aged rat brain attenuate injury-induced cytokine response after excitotoxic damage. J. Neurosci. Res. 87, 2484-2497.   DOI
42 Chang, H. N., Pang, J. H., Chen, C. P., Ko, P. C., Lin, M. S., Tsai, W. C. and Yang, Y. M. (2012) The effect of aging on migration, proliferation, and collagen expression of tenocytes in response to ciprofloxacin. J. Orthop. Res. 30, 764-768.   DOI
43 Collins-Hooper, H., Woolley, T. E., Dyson, L., Patel, A., Potter, P., Baker, R. E., Gaffney, E. A., Maini, P. K., Dash, P. R. and Patel, K. (2012) Age-related changes in speed and mechanism of adult skeletal muscle stem cell migration. Stem Cells 30, 1182-1195.   DOI
44 Dai, W., Zhou, J., Jin, B. and Pan, J. (2016) Class III-specific HDAC inhibitor Tenovin-6 induces apoptosis, suppresses migration and eliminates cancer stem cells in uveal melanoma. Sci. Rep. 6, 22622.   DOI
45 De Cecco, M., Jeyapalan, J., Zhao, X., Tamamori-Adachi, M. and Sedivy, J. M. (2011) Nuclear protein accumulation in cellular senescence and organismal aging revealed with a novel single-cell resolution fluorescence microscopy assay. Aging (Albany N.Y.) 3, 955-967.   DOI
46 Lutz, C. T. and Quinn, L. S. (2012) Sarcopenia, obesity, and natural killer cell immune senescence in aging: altered cytokine levels as a common mechanism. Aging (Albany N.Y.) 4, 535-546.   DOI
47 Lian, J., Lv, S., Liu, C., Liu, Y., Wang, S., Guo, X., Nan, F., Yu, H., He, X., Sun, G. and Ma, X. (2016) Effects of serial passage on the characteristics and cardiac and neural differentiation of human umbilical cord Wharton's jelly-derived mesenchymal stem cells. Stem Cells Int. 2016, 9291013.
48 Liddelow, S. A., Guttenplan, K. A., Clarke, L. E., Bennett, F. C., Bohlen, C. J., Schirmer, L., Bennett, M. L., Munch, A. E., Chung, W. S., Peterson, T. C., Wilton, D. K., Frouin, A., Napier, B. A., Panicker, N., Kumar, M., Buckwalter, M. S., Rowitch, D. H., Dawson, V. L., Dawson, T. M., Stevens, B. and Barres, B. A. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481-487.   DOI
49 Logan, S., Pharaoh, G. A., Marlin, M. C., Masser, D. R., Matsuzaki, S., Wronowski, B., Yeganeh, A., Parks, E. E., Premkumar, P., Farley, J. A., Owen, D. B., Humphries, K. M., Kinter, M., Freeman, W. M., Szweda, L. I., Van Remmen, H. and Sonntag, W. E. (2018) Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-beta uptake in astrocytes. Mol. Metab. 9, 141-155.   DOI
50 McHugh, D. and Gil, J. (2018) Senescence and aging: causes, consequences, and therapeutic avenues. J. Cell Biol. 217, 65-77.   DOI
51 Murphy, N. and Lynch, M. A. (2012) Activation of the P2X(7) receptor induces migration of glial cells by inducing cathepsin B degradation of tissue inhibitor of metalloproteinase 1. J. Neurochem. 123, 761-770.   DOI
52 Miranda, C. J., Braun, L., Jiang, Y., Hester, M. E., Zhang, L., Riolo, M., Wang, H., Rao, M., Altura, R. A. and Kaspar, B. K. (2012) Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11, 542-552.   DOI
53 Montgomery, R. R. and Shaw, A. C. (2015) Paradoxical changes in innate immunity in aging: recent progress and new directions. J. Leukoc. Biol. 98, 937-943.   DOI
54 Moraga, A., Pradillo, J. M., Garcia-Culebras, A., Palma-Tortosa, S., Ballesteros, I., Hernandez-Jimenez, M., Moro, M. A. and Lizasoain, I. (2015) Aging increases microglial proliferation, delays cell migration, and decreases cortical neurogenesis after focal cerebral ischemia. J. Neuroinflammation 12, 87.   DOI
55 Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E. E., Linskens, M., Rubelj, I. and Pereira-Smith, O. (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U.S.A. 92, 9363-9367.   DOI
56 Caldeira, C., Oliveira, A. F., Cunha, C., Vaz, A. R., Falcao, A. S., Fernandes, A. and Brites, D. (2014) Microglia change from a reactive to an age-like phenotype with the time in culture. Front. Cell. Neurosci. 8, 152.   DOI
57 Morales, I., Guzman-Martinez, L., Cerda-Troncoso, C., Farias, G. A. and Maccioni, R. B. (2014) Neuroinflammation in the pathogenesis of Alzheimer's disease. A rational framework for the search of novel therapeutic approaches. Front. Cell. Neurosci. 8, 112.   DOI
58 Munoz-Najar, U. and Sedivy, J. M. (2011) Epigenetic control of aging. Antioxid. Redox Signal. 14, 241-259.   DOI
59 Nadal-Nicolas, F. M., Galindo-Romero, C., Valiente-Soriano, F. J., Barbera-Cremades, M., deTorre-Minguela, C., Salinas-Navarro, M., Pelegrin, P. and Agudo-Barriuso, M. (2016) Involvement of P2X7 receptor in neuronal degeneration triggered by traumatic injury. Sci. Rep. 6, 38499.   DOI
60 Pertusa, M., Garcia-Matas, S., Rodriguez-Farre, E., Sanfeliu, C. and Cristofol, R. (2007) Astrocytes aged in vitro show a decreased neuroprotective capacity. J. Neurochem. 101, 794-805.   DOI
61 Phatnani, H. and Maniatis, T. (2015) Astrocytes in neurodegenerative disease. Cold Spring Harb. Perspect. Biol. 7, a020628.   DOI
62 Rosenstiel, P., Derer, S., Till, A., Hasler, R., Eberstein, H., Bewig, B., Nikolaus, S., Nebel, A. and Schreiber, S. (2008) Systematic expression profiling of innate immune genes defines a complex pattern of immunosenescence in peripheral and intestinal leukocytes. Genes Immun. 9, 103-114.   DOI
63 Poland, G. A., Ovsyannikova, I. G., Kennedy, R. B., Lambert, N. D. and Kirkland, J. L. (2014) A systems biology approach to the effect of aging, immunosenescence and vaccine response. Curr. Opin. Immunol. 29, 62-68.   DOI
64 Ponten, J. and Macintyre, E. H. (1968) Long term culture of normal and neoplastic human glia. Acta Pathol. Microbiol. Scand. 74, 465-486.   DOI
65 Ponten, J., Stein, W. D. and Shall, S. (1983) A quantitative analysis of the aging of human glial cells in culture. J. Cell. Physiol. 117, 342-352.   DOI
66 Ries, M. and Sastre, M. (2016) Mechanisms of Abeta clearance and degradation by glial cells. Front. Aging Neurosci. 8, 160.   DOI
67 Rodier, F. and Campisi, J. (2011) Four faces of cellular senescence. J. Cell Biol. 192, 547-556.   DOI
68 Rozovsky, I., Wei, M., Morgan, T. E. and Finch, C. E. (2005) Reversible age impairments in neurite outgrowth by manipulations of astrocytic GFAP. Neurobiol. Aging 26, 705-715.   DOI
69 Sadaba, M. C., Martin-Estal, I., Puche, J. E. and Castilla-Cortazar, I. (2016) Insulin-like growth factor 1 (IGF-1) therapy: mitochondrial dysfunction and diseases. Biochim. Biophys. Acta 1862, 1267-1278.   DOI
70 Salminen, A., Ojala, J., Kaarniranta, K., Haapasalo, A., Hiltunen, M. and Soininen, H. (2011) Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype. Eur. J. Neurosci. 34, 3-11.   DOI
71 Shall, S. and Stein, W. D. (1979) A mortalization theory for the control of the cell proliferation and for the origin of immortal cell lines. J. Theor. Biol. 76, 219-231.   DOI
72 Schipper, H. M., Bernier, L., Mehindate, K. and Frankel, D. (1999) Mitochondrial iron sequestration in dopamine-challenged astroglia: role of heme oxygenase-1 and the permeability transition pore. J. Neurochem. 72, 1802-1811.   DOI
73 Scuderi, C., Stecca, C., Iacomino, A. and Steardo, L. (2013) Role of astrocytes in major neurological disorders: the evidence and implications. IUBMB Life 65, 957-961.   DOI
74 Seifert, G., Schilling, K. and Steinhauser, C. (2006) Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat. Rev. Neurosci. 7, 194-206.   DOI
75 Sidoryk-Wegrzynowicz, M., Wegrzynowicz, M., Lee, E., Bowman, A. B. and Aschner, M. (2011) Role of astrocytes in brain function and disease. Toxicol. Pathol. 39, 115-123.   DOI
76 Simard, M. and Nedergaard, M. (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129, 877-896.   DOI