• 제목/요약/키워드: Neuro Genetic

검색결과 73건 처리시간 0.028초

Genetic Algorithms를 이용한 비선형 시스템의 신경망 제어 (Neuro-Control of Nonlinear Systems Using Genetic Algorithms)

  • 조현섭;민진경;유인호
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2006년도 춘계학술발표논문집
    • /
    • pp.316-319
    • /
    • 2006
  • Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

뉴로 유전자 결합모형을 이용한 상수도 1일 급수량 예측 (Prediction of Daily Water Supply Using Neuro Genetic Hybrid Model)

  • 이경훈;강일환;문병석;박진금
    • 환경영향평가
    • /
    • 제14권4호
    • /
    • pp.157-164
    • /
    • 2005
  • Existing models that predict of Daily water supply include statistical models and neural network model. The neural network model was more effective than the statistical models. Only neural network model, which predict of Daily water supply, is focused on estimation of the operational control. Neural network model takes long learning time and gets into local minimum. This study proposes Neuro Genetic hybrid model which a combination of genetic algorithm and neural network. Hybrid model makes up for neural network's shortcomings. In this study, the amount of supply, the mean temperature and the population of the area supplied with water are use for neural network's learning patterns for prediction. RMSE(Root Mean Square Error) is used for a MOE(Measure Of Effectiveness). The comparison of the two models showed that the predicting capability of Hybrid model is more effective than that of neural network model. The proposed hybrid model is able to predict of Daily water, thus it can apply real time estimation of operational control of water works and water drain pipes. Proposed models include accidental cases such as a suspension of water supply. The maximum error rate between the estimation of the model and the actual measurement was 11.81% and the average error was lower than 1.76%. The model is expected to be a real-time estimation of the operational control of water works and water/drain pipes.

강화 학습에 기반한 뉴로-퍼지 제어기 (Neuro-Fuzzy Controller Based on Reinforcement Learning)

  • 박영철;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.395-400
    • /
    • 2000
  • 본 논문에서는 강화학습에 기반한 새로운 뉴로-퍼지 제어기를 제안한다. 시스템은 개체의 행동을 결정하는 뉴로-퍼지 제어기와 그 행동을 평가하는 동적 귀환 신경회로망으로 구성된다. 뉴로-퍼지 제어기의 후건부 소속함수는 강화학습을 한다. 한편, 유전자 알고리즘을 통하여 진화하는 동적 귀환 신경회로망은 환경으로부터 받는 외부 강화신호와 로봇의 상태로부터 내부강화 신호를 만들어낸다. 이 출력(내부강화신호)은 뉴로-퍼지 제어기의 교사신호로 사용되어 제어기가 학습을 지속하도록 만든다. 제안한 시스템은 미지의 환경에서 제어기의 최적화 및 적응에 사용할 수 있다. 제안한 알고리즘은 컴퓨터 시뮬레이션 상에서 자율 이동로봇의 장애물 회피에 적용하여 그 유효성을 확인한다.

  • PDF

The Determination of Coagulant Feeding Rate in the Water Treatment Plant Using Intelligent Algorithms

  • Kim, Yong-Yeol;Jung, Hyung-Tae;Jang, Gil-Soo;Park, Chul-Hong;Kang, E-Sok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.123.2-123
    • /
    • 2001
  • It is difficult to determine the feeding rate of coagulant in the water treatment plant, due to nonlinearity, multivariables and slow response characteristics, etc. To deal with this difficulty, the neuro-fuzzy system and the genetic-fuzzy system were used in determining the feeding rate of the coagulant. The fuzzy system is excellently robust in multi-variables and nonlinear problems. Therefore it uses basic algorithm, but it is difficult to construct of the fuzzy parameter such as the rule table and the membership function, Therefore we made the neuro-fuzzy system and the genetic-fuzzy system with the fusion of learning algorithms and compared the performance of the two fuzzy systems. To apply these algorithms, we made the rule table, membership function from the actual operation data of the water treatment plant. We determined optimized feeding rate of coagulant using the fuzzy operation, and also compared ...

  • PDF

Control of Nonminimum Phase Systems with Neural Networks and Genetic Algorithm

  • Park, Lae-Jeong;Park, Sangbong;Bien, Zeugnam;Park, Cheol-Hoon
    • 한국지능시스템학회논문지
    • /
    • 제4권1호
    • /
    • pp.35-49
    • /
    • 1994
  • It is well known that, for nominimum phase systems, a conventional linear controller of PID type or an adaptive controller of this structure shows limitation in achieving a satisfactory performance under tight specifications. In this paper, we combine a neuro-controller with a PI-controller with off-line learning capability provided by the Genetic Algorithm to propose a novel neuro-controller to control nonminimum phase systems effectively. The simulation results show that our proposed model is more efficient with faster rising time and less undershoot effect when the performances of the proposed controller and a conventional form are compared.

  • PDF

진화전략으로 학습되는 뉴로퍼지 시스템의 비선형 시스템 동정에의 응용 (Application of a Neuro-Fuzzy System Trained by Evolution Strategy to Nonlinear System Identification)

  • 정성훈
    • 전자공학회논문지CI
    • /
    • 제39권1호
    • /
    • pp.23-34
    • /
    • 2002
  • 본 논문에서는 진화전략을 이용하여 빠르게 학습하는 새로운 구조의 뉴로퍼지 시스템을 제안하고 제안한 시스템의 효용성을 입증하기 위하여 비선형 시스템 동정에 응용한 결과를 설명한다. 뉴로퍼지 시스템의 학습 방법으로는 지금까지 주로 변형된 오류역전파 알고리즘과 최적화 기법인 유전자 알고리즘이 많이 사용되어왔으나, 오류역전파 알고리즘은 학습시간이 많이 걸리며 유전자 알고리즘은 해를 유전형 형태로 표현함으로 인하여 미세한 탐색이 힘든 단점이 있었다. 본 논문에서 사용한 진화전력은 해를 표현형의 개체로 나타내어 실수형태로 진화하기 대문에 미세한 탐색이 가능하며 오류역전파 알고리즘에 비해 지역해에 빠질 가능성이 작고 속도가 빠른 장점이 있다. 제안한 뉴로퍼지 시스템을 비선형 시스템 동정에 적용한 결과 학습속도가 빠르며 학습결과도 우수함을 보았다.

상수처리 수질제어를 위한 약품주입 자동연산 (Optimum chemicals dosing control for water treatment)

  • 하대원;고택범;황희수;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.772-777
    • /
    • 1993
  • This paper presents a neuro-fuzzy modelling method that determines chemicals dosing model based on historical operation data for effective water quality control in water treatment system and calculates automatically the amount of optimum chemicals dosing against the changes of raw water qualities and flow rate. The structure identification in the modelling by means of neuro-fuzzy reasing is performed by Genetic Algorithm(GA) and Complex Method in which the numbers of hidden layer and its hidden nodes, learning rate and connection pattern between input layer and output layer are identified. The learning network is implemented utilizing Back Propagation(BP) algorithm. The effectiveness of the proposed modelling scheme and the feasibility of the acquired neuro-fuzzy network is evaluated through computer simulation for chemicals dosing control in water treatment system.

  • PDF

뉴로-퍼지를 이용한 영상 필터 연구 (A Study on the Image Filter using Neuro-Fuzzy)

  • 변오성;이철희;문성룡;임기영
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.83-86
    • /
    • 2001
  • In this paper, it study about the image filter applied the hybrid fuzzy membership function to the neuro-fuzzy system. Here, this system applys the genetic algorithm in order to obtain the optimal image as the iteration carry for making the data value in the error. It is removed the included noise in an image using the proposed image filter and compared the proposed image filter performance with the other filters using MATLAB. And it is found that the proposed filter performance is superior to the other filters which has the similar structure through the images. To show the superior ability, it is compared with MSE and SNR for images.

  • PDF

하이브리드 퍼지뉴럴네트워크의 알고리즘과 구조 (Algorithm and Architecture of Hybrid Fuzzy Neural Networks)

  • 박병준;오성권;김현기
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.372-372
    • /
    • 2000
  • In this paper, we propose Neuro Fuzzy Polynomial Networks(NFPN) based on Polynomial Neural Network(PNN) and Neuro-Fuzzy(NF) for model identification of complex and nonlinear systems. The proposed NFPN is generated from the mutually combined structure of both NF and PNN. The one and the other are considered as the premise part and consequence part of NFPN structure respectively. As the premise part of NFPN, NF uses both the simplified fuzzy inference as fuzzy inference method and error back-propagation algorithm as learning rule. The parameters such as parameters of membership functions, learning rates and momentum coefficients are adjusted using genetic algorithms. As the consequence part of NFPN, PNN is based on Group Method of Data Handling(GMDH) method and its structure is similar to Neural Networks. But the structure of PNN is not fixed like in conventional Neural Networks and self-organizing networks that can be generated. NFPN is available effectively for multi-input variables and high-order polynomial according to the combination of NF with PNN. Accordingly it is possible to consider the nonlinearity characteristics of process and to get better output performance with superb predictive ability. In order to evaluate the performance of proposed models, we use the nonlinear function. The results show that the proposed FPNN can produce the model with higher accuracy and more robustness than any other method presented previously.

  • PDF