• Title/Summary/Keyword: Neuro Design

Search Result 226, Processing Time 0.024 seconds

Neuro-Fuzzy Controller Design of DSP for Real-time control of 3-Phase induction motors (3상 유도전동기의 실시간 제어를 위한 DSP의 뉴로-퍼지 제어기 설계)

  • Lim, Tae-Woo;Kang, Hack-Su;Ahn, Tae-Chon;Yoon, Yang-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2286-2288
    • /
    • 2001
  • In this paper, a drive system of induction motor with high performance is realized on the viewpoint of the design and experiment, using the DSP (TMS320F240). The speed controller for induction motor drive system is designed on the basis of a neuro-fuzzy network. The neuro-fuzzy controller acts as a feed-forward controller that provides the right control input for the plant and accomplishes error back-propagation algorithm through the network. The proposed network is used to achieve the high speedy calculation of the space vector PWM (Pulse Width Modulation) and to build the neuro-fuzzy control algorithm, for the real-time control. The proposed neuro-fuzzy algorithm on the basis of DSP shows that experimental results have good performance for the precise speed control of an induction motor drive system. It is confirmed that the proposed controller could provide more improved control performance than conventional v/f vector controllers through the experiment.

  • PDF

A Study on Optimization of Neuro-fuzzy System Parameter using Taguchi Method (다구찌 방법을 이용한 뉴로퍼지 시스템 파라미터의 최적화)

  • 김수영;신성철;고창두
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.69-73
    • /
    • 2003
  • Neuro-Fuzzy System is to combine merits of fuzzy inference system and neural networks. The neuro-fuzzy system applies a information about given input-output data to fuzzy theories and deals these fuzzy values with neural networks, e.g. first, redefines normalized input-output data as membership functions and then executes thses fuzzy information with backpropagation neural networks. This paper describes an innovative application of the Taguchi method for the determination of these parameters to meet the training speed and accuracy requirements. Results drawn from this research show that the Taguchi method provides an effective means to enhance the performance of the neuro-fuzzy system in terms of the speed for learning and the accuracy for recall.

The Adaptive-Neuro Control of Robot Manipulator Based-on TMS320C50 Chip (TMS320C50칩을 이용한 로봇 매니퓰레이터의 적응-신경제어)

  • 이우송;김용태;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.305-311
    • /
    • 2003
  • We propose a new technique of adaptive-neuro controller design to implement real-time control of robot manipulator, Unlike the well-established theory for the adaptive control of linear systems, there exists relatively little general theory for the adaptive control of nonlinear systems. Adaptive control technique is essential for providing a stable and robust performance for application of robot control. The proposed neuro control algorithm is one of loaming a model based error back-propagation scheme using Lyapunov stability analysis method. Through simulation, the proposed adaptive-neuro control scheme is proved to be a efficient control technique for real time control of robot system using DSPs(TMS320C50)

  • PDF

Optimum Design of Midship Section by Artificial Neural Network (뉴랄 네트워크에 의한 선체 중앙단면 최적구조설계)

  • Yang, Y.S.;Moon, S.H.;Kim, S.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.44-55
    • /
    • 1996
  • Since the use of computer for the ship structural design around mid 1960``s, specially many researches on the midship section optimum design were carried out from 1980. For a rule-based optimum design case, there has been a problem of handling a discrete design variable such as plate thickness for a practical use. To deal with the discrete design variable problems and to develop an effective new method using artificial neural network for the ship structural design applications, Neuro-Optimizer combing Hopfield Neural Network and other Simulated Annealing is proposed as a new optimization method and then applied to the fundamental skeletal structures and Midship section of Tanker. From the numerical results, it is confirmed that Neuro-Optimizer could be used effectively as a new optimization method for the structural design.

  • PDF

CMAC Neuro-Fuzzy Design for Color Calibration (컬러재현을 위한 CMAC의 뉴로퍼지 설계)

  • 이철희;변오성;문성룡;임기영
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.97-100
    • /
    • 2001
  • CMAC model was proposed by Albus [6] to formulate the processing characteristics of the human cerebellum. Instead of the global weight updating scheme used in the back propagation, CMAC use the local weight updating scheme. Therefore, CMAC have the advantage of fast learning and high convergence rate. In this paper, simulate Color Calibration by CMAC in color images and design hardware by VHDL-base high-level synthesis.

  • PDF

The Design of an Adaptive Neuro-Fuzzy Controller for a Temperature Control System (온도 제어 시스템을 위한 뉴로-퍼지 제어기의 설계)

  • 곽근창;김성수;이상혁;유정웅
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.493-496
    • /
    • 2000
  • In this paper, an adaptive neuro-fuzzy controller using the conditional fuzzy c-means(CFCM) methods is proposed. Usually, the number of fuzzy rules exponentially increases by applying the grid partitioning of the input space, in conventional adaptive neuro-fuzzy inference system(ANFIS) approaches. In order to solve this problem, CFCM method is adopted to render the clusters which represent the given input and output data. Finally, we applied the proposed method to the water path temperature control system and obtained a better performance than previous works.

  • PDF

Neuro-controller design with learning rate modification for the line of sight stabilization system

  • Jang, Jun-Oh;Jeon, Gi-Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.395-400
    • /
    • 1993
  • This paper presents an application of back propagation neural network to the tracking control of line of sight stabilization system. We design a neuro-control system having two neural networks one for learning system dynamics and the other for control. We use a learning method which adjusts learning rate and momentem as a function of plant output error and error change.

  • PDF

Phase Compensation of Fuzzy Control Systems and Realization of Neuro-fuzzy Compenastors

  • Tanaka, Kazuo;Sano, Manabu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.845-848
    • /
    • 1993
  • This paper proposes a design method of fuzzy phase-lead compensator and its self-learning by neural network. The main feature of the fuzzy phase-lead compensator is to have parameters for effectively compensating phase characteristics of control systems. An important theorem which is related to phase-lead compensation is derived by introducing concept of frequency characteristics. We propose a design procedure of fuzzy phase-lead compensators for linear controlled objects. Furthermore, we realize a neuro-fuzzy compensator for unknown or nonlinear controlled objects by using Widrow-Hoff learning rule.

  • PDF

Temperature Control by On-line CFCM-based Adaptive Neuro-Fuzzy System (온 라인 CFCM 기반 적응 뉴로-퍼지 시스템에 의한 온도제어)

  • 윤기후;곽근창
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.39 no.4
    • /
    • pp.414-422
    • /
    • 2002
  • In this paper, we propose a new method of adaptive neuro-fuzzy control using CFCM(Conditional Fuzzy c-means) clustering and fuzzy equalization method to deal with adaptive control problem. First, in the off-line design, CFCM clustering performs structure identification of adaptive neuro-fuzzy control with the homogeneous properties of the given input and output data. The parameter identification are established by hybrid learning using back-propagation algorithm and RLSE(Recursive Least Square Estimate). In the on-line design, the premise and consequent parameters are tuned to RLSE with forgetting factor due to a characteristic of time variant. Finally, we applied the proposed method to the water temperature control system and obtained better results than previous works such as fuzzy control.

Design & application of adaptive fuzzy-neuro controllers (적응 퍼지-뉴로 제어기의 설계와 응용)

  • Kang, Kyeng-Wuon;Kim, Yong-Min;Kang, Hoon;Jeon, Hong-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.710-717
    • /
    • 1993
  • In this paper, we focus upon the design and applications of adaptive fuzzy-neuro controllers. An intelligent control system is proposed by exploiting the merits of two paradigms, a fuzzy logic controller and a neural network, assuming that we can modify in real time the consequential parts of the rulebase with adaptive learning, and that initial fuzzy control rules are established in a temporarily stable region. We choose the structure of fuzzy hypercubes for the fuzzy controller, and utilize the Perceptron learning rule in order to update the fuzzy control rules on-line with the output error. And, the effectiveness and the robustness of this intelligent controller are shown with application of the proposed adaptive fuzzy-neuro controller to control of the cart-pole system.

  • PDF