• Title/Summary/Keyword: Neurel Network

Search Result 3, Processing Time 0.016 seconds

신경망모형을 이용한 아파트 가격 모형에 관한 연구

  • Hong, Han-Kook
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.220-226
    • /
    • 2009
  • 본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 널리 이용되어 왔던 신경망모형(Neural Network Model)은 입력변수가 불완전하고 변동폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정밀하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.

  • PDF

A Neural Network for Concept Learning : Recognitron (개념 학습에 의한 신경 회로망 컴퓨터)

  • Lee, Ki-Han;Whang, Hee-Yoong;Kim, Choon-Suk
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.495-499
    • /
    • 1989
  • Concept is the set of selected neurons in a stable state of a neurel network. The Recognitron uses a parallel feedback structure to support concept learning. A number of clusters can exist in response to a given input, each of which make up a selective neuron. There are supervised and unsupervised learnig methods in concept teaming. In this paper, we have chosen unsupervised learning. Also, a new concept called relaxational learning has been introduced to stop runaway weights

  • PDF

신경망모형을 이용한 아파트 가격 모형에 관한 연구

  • Hong, Han-Kook
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2010.04a
    • /
    • pp.379-385
    • /
    • 2010
  • 본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 멀리 이용되어 왔던 신경망모형 (Neural Network Model)은 입력변수가 불완전하고 변동 폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정말하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.

  • PDF