• 제목/요약/키워드: Neural-Network Controller

검색결과 1,126건 처리시간 0.03초

Anti-Sway에 관한 연구 (A Study on Anti-Sway of Crane using Neural Network Predictive PID Controller)

  • 손동섭;이진우;민정탁;이권순
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2002년도 춘계학술대회논문집
    • /
    • pp.219-227
    • /
    • 2002
  • In this paper, we designed neural network predictive PID controller to control sway happened in transfer of trolley for automatic travel control system. We include dynamic character of nonlinear system, and mathematical expression veny simple used neural network. When various establishment location and surrounding disturbance were approved based on mathematical modelling of crane, controller designed to become effective control location error and vibration angle of two control variables that simultaneously can predictive control. Neural network predictive PID controller produced parameter of PID controller using neural network self-tuner. Neural network self-tuner's input used crane's output and neural network predictive output. Neural network self-tuner using error back propagation algorithm. We analyzed control performance comparison through computer simulation when applied disturbance about sway of location and angle in transfer of crane. The results show that the proposed neural network predictive PID controller has better performances than general PID controller, neural network PID controller.

  • PDF

최적제어와 신경회로망을 이용한 능동형 현가장치 제어 (Active Suspension System Control Using Optimal Control & Neural Network)

  • 김일영;정길도;이창구
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.15-26
    • /
    • 1998
  • Full car model is needed for investigating as a entire dynamics of vehicle. In this study, 7DOF of full car model's dynamics is selected. This paper proposes the output feedback controller based on optimal control theory. Input data and output data from the optimal controller are used for neural network system identification of the suspension system. To do system identification, neural network which has robustness against nonlinearities and disturbances is adapted. This study uses back-propagation algorithm to train a multil-layer neural network. After obtaining a neural network model of a suspension system, a neuro-controller is designed. Neuro-controller controls suspension system with off-line learning method and multistep ahead prediction model based on the neural network model and a neuro-controller. The optimal controller and the neuro-controller are designed and then, both performances are compared through. For simulation, sinusoidal and rectangular virtual bumps are selected.

  • PDF

앞먹임 신경회로망 제어기를 이용한 자기부상 실험시스템의 제어 (Control of an experimental magnetic levitation system using feedforward neural network controller)

  • 장태정;이재환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1557-1560
    • /
    • 1997
  • In this paper, we have built an experimental magnetic levitation system for a possible use of control education. We have give a mathermatical model of the nonlinear system and have shown the stability region of the linearized system when it is controlled by a PD controller. We also proposed a neural network control system which uses a neural network as a feedforward controller thgether with a conventional feedback PF controller. We have generated a desired output trajectory, which was designed for the benefit of the generalization of the neural network controller, and trained the desired output trajectory, which was desigend for the benefit of the generalization of the neural netowrk controller, and trained a neural network controller with the data of the actual input and the output of the system obtained by applying the desired output trajectroy. A good tracking performance was observed for both the desired trajectiories used and not used for the neural network training.

  • PDF

신경회로망의 쟈쿄비안을 이용한 feedforward/feedback 병합제어기 설계 (The combined feedforward/fedback controller design using jacobians of neural network)

  • 조규상;임제택
    • 전자공학회논문지B
    • /
    • 제33B권2호
    • /
    • pp.140-148
    • /
    • 1996
  • This paper proposes a combined feedforward/feedback controller which uses jacobians of neural network. The jacobians are calculated form the neural network that identifies the nonlinear plant, which are used for designing a jacobian controller and for training a neural network controller. Normally, it takes much time to train the neural network controller. Combining the neural and the jacobian controller, it can be a stable controller from the beginning of training phase of neural network, and it can be implemented as a learning-while-functioning controller. Simulated resutls for the proposed controller show its effectiveness and better performances.

  • PDF

퍼지 보상기를 사용한 리커런트 시간지연 신경망 제어기 설계 (Design of Recurrent Time Delayed Neural Network Controller Using Fuzzy Compensator)

  • 이상윤;한성현;신위재
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.463-468
    • /
    • 2002
  • In this paper, we proposed a recurrent time delayed neural network controller which compensate a output of neural network controller. Even if learn by neural network controller, it can occur an bad results from disturbance or load variations. So in order to adjust above case, we used the fuzzy compensator to get an expected results. And the weight of main neural network can be changed with the result of learning a inverse model neural network of plant, so a expected dynamic characteristics of plant can be got. As the results of simulation through the second order plant, we confirmed that the proposed recurrent time delayed neural network controller get a good response compare with a time delayed neural network controller.

  • PDF

구륜 이동 로봇의 경로 추적을 위한 퍼지-신경망 제어기 설계 (A Design of Fuzzy-Neural Network Controller of Wheeled-Mobile Robot for Path-Tracking)

  • 박종국;김상원
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1241-1248
    • /
    • 2004
  • A controller of wheeled mobile robot(WMR) based on Lyapunov theory is designed and a Fuzzy-Neural Network algorithm is applied to this system to adjust controller gain. In conventional controller of WMR that adopts fixed controller gain, controller can not pursuit trajectory perfectly when initial condition of system is changed. Moreover, acquisition of optimal value of controller gain due to variation of initial condition is not easy because it can be get through lots of try and error process. To solve such problem, a Fuzzy-Neural Network algorithm is proposed. The Fuzzy logic adjusts gains to act up to position error and position error rate. And, the Neural Network algorithm optimizes gains according to initial position and initial direction. Computer simulation shows that the proposed Fuzzy-Neural Network controller is effective.

신경망을 이용한 비선형 플렌트 최적제어에 관한 연구 (An Optimized Controller for Nonlinear Plant Based on Neural Network)

  • ;;조현섭;박왈서
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 D
    • /
    • pp.2490-2492
    • /
    • 2002
  • Design of controller of nonlinear systems is an important part of control research. In this paper, a controller for nonlinear plants using a neural network is presented. The controller is a combination of an approximate PID controller and a neural network controller. The PID controller be used for stabilizing the process and for compensating for possible disturbances, a neural network act as feedforward controller. In this method, a RBF neural network is trained and the system has a stable performance for the inputs it has been trained for. Simulation results show that it is very effective and can realize a satisfactory control of the nonlinear system and meets the demands of the system.

  • PDF

전력계통의 부하주파수 제어를 위한 신경회로망 전 보상 PID 제어기 적용 (Application of Neural Network Precompensated PID Controller for Load Frequency Control of Power Systems)

  • 김상효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권4호
    • /
    • pp.480-487
    • /
    • 1999
  • In this paper we propose a neural network precompensated PID(NNP PID) controller for load frequency control of 2-area power system. While proportional integral derivative(PID) controllers are used in power system they have many problems because of high nonlinearities of the power system So a neural network-based precompensation scheme is adopted into a conventional PID controller to obtain a robust control to the nonlinearities. The applied neural network precompen-sator uses an error back-propagation learning algorithm having error and change of error as inputand considers the changing component of forward term of weighting factor for reducing of learning time. Simulation results show that the proposed control technique is superior to a conventional PID controller and an optimal controller in dynamic responses about load disturbances. The pro-posed technique can be easily implemented by adding a neural network precompensator to an existing PID controller.

  • PDF

반복학습 제어를 사용한 신경회로망 제어기의 구현 (Realization of a neural network controller by using iterative learning control)

  • 최종호;장태정;백석찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.230-235
    • /
    • 1992
  • We propose a method of generating data to train a neural network controller. The data can be prepared directly by an iterative learning technique which repeatedly adjusts the control input to improve the tracking quality of the desired trajectory. Instead of storing control input data in memory as in iterative learning control, the neural network stores the mapping between the control input and the desired output. We apply this concept to the trajectory control of a two link robot manipulator with a feedforward neural network controller and a feedback linear controller. Simulation results show good generalization of the neural network controller.

  • PDF

신경 회로망을 이용한 압전구동기의 정밀위치제어 (Precision Position Control of a Piezoelectric Actuator Using Neural Network)

  • 김해석;이병룡;박규열
    • 한국정밀공학회지
    • /
    • 제16권11호
    • /
    • pp.9-15
    • /
    • 1999
  • A piezoelectric actuator is widely used in precision positioning applications due to its excellent positioning resolution. However, the piezoelectric actuator lacks in repeatability because of its inherently high hysteresis characteristic between voltage and displacement. In this paper, a controller is proposed to compensate the hysteresis nonlinearity. The controller is composed of a PID and a neural network part in parallel manner. The output of the PID controller is used to teach the neural network controller by the unsupervised learning method. In addition, the PID controller stabilizes the piezoelectric actuator in the beginning of the learning process, when the neural network controller is not learned. However, after the learning process the piezoelectric actuator is mainly controlled by the neural netwok controller. In this paper, the excellent tracking performance of the proposed controller was verified by experiments and was compared with the classical PID controller.

  • PDF