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Abstract - Design of controller of nonlinear
systems is an important part of control research.In
this paper, a controller for nonlinear plants using a
neural network is presented. The controller is a
combination of an approximate PID controller and a
neural network controller.The PID controller be used
for stabilizing the process and for compensating for
possible disturbances , a neural network act as
feedforward controller. In this method, a RBF neural
network is trained and the system has a stable
performance for the inputs it has been trained for.
Simulation results show that it is very effective and
can realize a satisfactory control of the- nonlinear
system and meets the demands of the system.
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1. Introduction:

The control of systems with complex,unknown,and
nonlinear dynamics has become a topic of considerable
importance in control research. The conventional design
methods of a control system often require the
construction of a mathematical model describing the
dynamic behavior of the plant to be controlled. When
such a mathematical model is difficult to obtain due to
uncertainty or complexity of systems,these conventional
techniques based on a mathematical model are not well
suited for dealing with. Neural networks have massive
parallelism and ability to approximate arbitrary nonlinear
mappings.So artifical neural network teachiques have
been suggested for identification and control of nonlinear
plants for which conventional techniques of control do
not give satisfactory performance, such as the accuracy
in matching the behavior of the physical system.Inverse
models of dynamical systems play a crucial role in a
range of control structures.Conceptually the simplest
approach is direct inverse control.Assuming that the
discrete-time models of a nonlinear system to be
controlled can be described by

yt+1) = fly(®), y(t-1),...,y(t-n+ 1), u(t), ut -1),... ult -m +1)]
Then a neural network is trained as the inverse model
of the nonlinear plant:

i) = F Iyt + 1), y(O,..., yt-n+ D), ut-1),...,ut -m + 1))
This inverse model can then be used as feedforward
controller for the plant by replacing y(t+1) with the
desired output(the reference r(t+1)).

4() = £t +1), y(O),..., yt-n+1),ut -1),...,u(t -m+1)]
There are two train strategies for the inverse model are
available:generalized training and specialized training.In
generalized training a network is trained off-line to
minimize the following criterion(w specifies the weights
in the network) with Levenberg-Marquardt method.

Jo(w) = Y (u(t) - @)’
1=1

Specialized training is an on-line procedure related to
model-reference adaptive control.The idea is to minimize
the criterion:

J, (W)=Y (3. () -y

Specialized training is often said to be goal directed
because it, as opposed to generalized training,attempts to
train the network so that the output of the process
follows the reference closely.For this reason,specialized
training is particulary well-suited for optimizing the
controller for a prescribed reference trajectory.Specialized
training must be performed on-line and thus it is much
more difficult to carry out in practice than generalized
training.Before the actural training of the inverse model
is initiated,a forward model of the plant must be trained
since this is required by the scheme.The specialized
inverse learning structure is shown in Figure 1.The error
may then be propagated back through the forward model
and then the inverse model;only the inverse network
model weight are adjusted during this procedure.
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Figure 1. The structure of specialized training
Using inverse models for feedback control leads to a
dead-beat type of control which is unsuitable in many
cases.If a PID controller has already been tuned for
stabilizing the process,an inverse model can be used for
providing a feedforward signal directly from the
reference. Through  combining the two controller, the
PID controller is used for stabilizing the process and
suppressing disturbances while the feedforward controller
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is used for providing a fast tracking of the reference.

2.Controller Design and RBF Network Train

The structure of control system is shown in Figure 2.
The feedback controller can be a PID or any other
conventional controller. The neural network employed in
this scheme is an Radial Basis Function Network
(RBFN). It produces a feedforward signal directly from
the reference to optimize the control system.The structure
of RBFN is showed in Figure 3. It is a network with
two layers. A hidden layer of radial basis neurons and
an an output layer of linear neurons.A common choice
for the basis function is a Gaussion given by the

G (x) = ex —-M i=12,.m
equation: ' 20°

Where ci represents the center of the basis
function and o denotes its width.-The norm ||-||

in equation can be expressed by Euclidean
distance. The weights and biases of each neuron in
the hidden layer define the position and width of a
radial basis function. Each linear output neuron forms a
weighted sum of these radial basis functions.With the
correct weight and bias values for each layer,and enough
hidden neurons,a RBFN can fit any function with any
desired accuracy.The advantage of the RBFN is its rapid
learning, generality and simplicity. RBFN finds the input
to output map using local approximators.It can be
trained faster than BP network and have none of BPs
training problems such as saturation and local minima.

RBF Neural Network
Inverse Model

Figure 2. The structure of the control system

One of the simplest training algorithms for an RBF
network is to have as many hidden units as there are
training samples. The width parameter is  set,
heuristically, to a number between the minimum distance
between points in the training set and the maximum
distance between points in the training set, Since the
mapping from the hidden units to the output is a linear
function.
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Figure 3. Radial Basis Function Network

The interpolation matrix is used where every row
corresponds to the response in the hidden layer for each
observation and every column to one hidden unit. This
solution is exact, i.e. F(n)=y(n) for all observations in
the training data set.The exact RBF training algorithm is
available in MATLAB in the function NEWRBE. The
exact RBF training algorithm is of course not a good
choice if we have noise in our data. In this case we
know (almost) for certain that the output values y(n) we
have in the training data are incorrect, and we do not
want to construct a model that reproduces these values
exactly. Instead, we want a noisy interpolation model
like the Generalized Regression Neural Network
(GRNN).The MATLAB function NEWGRNN implements
the GRNN algorithm,which is a normalized version of
the RBF network. This normalization corresponds to a
special form of kernel interpolation. Using all the
training examples as centers is simple and produces an
exact solution (i.e. a solution with zero training error, if
this is desired). Howeverthis produces very large
networks. It is often possible to achieve almost as good
training results as the exact solution, but using only a
small subset of the training data. Furthermore, these
smaller networks tend to produce better test results than
the exact training solution.There are different ways to
select this small subset of the training data. One is to
choose a random subset of the training data, another is
to iteratively select the observation that minimizes the
training error the most. The latter method is effectively
done using the orthogonal least squares technique.A
random subsets of the training data is very
simple:Instead of using all the training input data as
center points, we select a small subset of them as center
points. The main reason for this is to lower the number
of internal units in the network, e.g. for real-time
operation.Radial basis functions are often referred to as
local mappings. This means that typically only a few of
the hidden units will respond when a new input is
presented to the network. Each hidden unit only has a
local area in input space within which it responds. For
this reason, it usually requires quite many units to
construct a good mapping.On the other hand,this also
means that two hidden units seldom interfere with each
other when an RBF net is trained.

Taking an overlapping Gaussian activation function for
kerne! units supposedly provides a smoother response
and better generalization.but in our case the amount of
interference  was so high and we obtained a better
performance with non-overlapping regions. During the
training stage,each time only one kernel unit responds
and one weight is adjusted,This results in a shorter
training time compared with Multi-layer Perceptron
(MLP) type networks. Because this method does not
need prior knowledge about the transfer characteristics of
the computing devices,it is not affected by the effects of
neuron to neuron variations. Generally optimization
methods based on parameter perturbation are bound to
failure when many parameters are involved in
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perturbation and that is because of the moving target
effect of the other parameters.It is not the case in the
proposed system for which only one or few related
parameters are active at each time.

3.Simulation Study

We consider a nonlinear dynamic plant which is
governed by the difference equation:
yt+1) = fy(0), y(t- 1) u(®), u(t - 1), u(t - 2)]

with an arbitrary unknown
f.)=1+cos{6x{y* () + y2(t-D]} + ™ +u(t-1) +u’(t-2).

The input to the nonlinear system s
r(t)=sin(2nt/250) in the interval [-1,1].The
simulation results obtained for this case are shown in
Figure 4. Figure 4a show the input sequence (a half for
training the inverse mode and a half for testing
itrespectively). Figure 4b show plant corresponding
responses. Figure 4c show the correlation function of
error response and Figure 4d show the actual control
signal (u) and the prediction signal (uhat) as well as the
error signal(u-uhat). Figure 4 (a) The input to the
nonlinear system r(t). (b) Plant output.(c)Correlation
function of error response. (d)Actual control signal (u) ,
prediction (uhat) and error signal(u-uhat).

function:

4. Conclusions

A PID feedback controller for nonlinear plants combined
with neural feedforward controller optimized the existing
control system,which is guaranteed to perform stably for
the inputs that it has been trained for. The RBF network
differ from classical multi-layer perceptrons.It have more
effective ability to leaming. Using this method of control
makes it  different from  conventional  control
methodologies. It makes a structure beyond the
capabilities of backpropagation based on neural
networks. The structure used here decreased in training
time.It can also be viewed as a gain scheduling adaptive
controller which can work for any unknown plant with
no attempt to linearize the system at each region.
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