• Title/Summary/Keyword: Neural-Network

Search Result 11,709, Processing Time 0.045 seconds

Neural Network Design for Spatio-temporal Pattern Recognition (시공간패턴인식 신경회로망의 설계)

  • Lim, Chung-Soo;Lee, Chong-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1464-1471
    • /
    • 1999
  • This paper introduces complex-valued competitive learning neural network for spatio-temporal pattern recognition. There have been quite a few neural networks for spatio-temporal pattern recognition. Among them, recurrent neural network, TDNN, and avalanche model are acknowledged as standard neural network paradigms for spatio-temporal pattern recognition. Recurrent neural network has complicated learning rules and does not guarantee convergence to global minima. TDNN requires too many neurons, and can not be regarded to deal with spatio-temporal pattern basically. Grossberg's avalanche model is not able to distinguish long patterns, and has to be indicated which layer is to be used in learning. In order to remedy drawbacks of the above networks, unsupervised competitive learning using complex umber is proposed. Suggested neural network also features simultaneous recognition, time-shift invariant recognition, stable categorizing, and learning rate modulation. The network is evaluated by computer simulation with randomly generated patterns.

  • PDF

Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network (인공신경망 기반의 기타 코드 분류 시스템 성능 비교)

  • Park, Sun Bae;Yoo, Do-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.

Unification of neural network with a hierarchical pattern recognition

  • Park, Chang-Mock;Wang, Gi-Nam
    • Proceedings of the ESK Conference
    • /
    • 1996.10a
    • /
    • pp.197-205
    • /
    • 1996
  • Unification of neural network with a hierarchical pattern recognition is presented for recognizing large set of objects. A two-step identification procedure is developed for pattern recognition: coarse and fine identification. The coarse identification is designed for finding a class of object while the fine identification procedure is to identify a specific object. During the training phase a course neural network is trained for clustering larger set of reference objects into a number of groups. For training a fine neural network, expert neural network is also trained to identify a specific object within a group. The presented idea can be interpreted as two step identification. Experimental results are given to verify the proposed methodology.

  • PDF

Realization of a neural network controller by using iterative learning control (반복학습 제어를 사용한 신경회로망 제어기의 구현)

  • 최종호;장태정;백석찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.230-235
    • /
    • 1992
  • We propose a method of generating data to train a neural network controller. The data can be prepared directly by an iterative learning technique which repeatedly adjusts the control input to improve the tracking quality of the desired trajectory. Instead of storing control input data in memory as in iterative learning control, the neural network stores the mapping between the control input and the desired output. We apply this concept to the trajectory control of a two link robot manipulator with a feedforward neural network controller and a feedback linear controller. Simulation results show good generalization of the neural network controller.

  • PDF

Experimental Studies of Neural Network Control Technique for Nonlinear Systern (신경회로망을 이용한 비선형 시스팀 제어의 실험적 연구)

  • Im, Sun-Bin;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.195-195
    • /
    • 2000
  • In this paper, intelligent control method using neural network as a nonlinear controller is presented, Neural network controller is implemented on DSP board in PC to make real time computing possible, On-line training algorithm for neural network control is proposed, As a test-bed, a large a-x table was build and interface with PC has been implemented, Experimental results under different PD controller gains show excellent position tracking for circular trajectory compared with those for PD controller only.

  • PDF

Growing Algorithm of Wavelet Neural Network (웨이블렛 신경망의 성장 알고리즘)

  • 서재용;김성주;김성현;김용민;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.57-60
    • /
    • 2001
  • In this paper, we propose growing algorithm of wavelet neural network. It is growing algorithm that adds hidden nodes using wavelet frame which approximately supports orthogonality in wavelet neural network based on wavelet theory. The result of this processing can be reduced global error and progresses performance efficiency of wavelet neural network. We apply the proposed algorithm to approximation problem and evaluate effectiveness of proposed algorithm.

  • PDF

Vibration Prediction in Milling Process by Using Neural Network (신경회로망을 이용한 밀링 공정의 진동 예측)

  • 이신영
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2003
  • In order to predict vibrations occurred during end-milling processes, the cutting dynamics was modelled by using neural network and combined with structural dynamics by considering dynamic cutting state. Specific cutting force constants of the cutting dynamics model were obtained by averaging cutting forces. Tool diameter, cutting speed, fled, axial and radial depth of cut were considered as machining factors in neural network model of cutting dynamics. Cutting farces by test and by neural network simulation were compared and the vibration displacement during end-milling was simulated.

Neural Network Based Simulation of Poisson Boltzmann Equation (뉴럴네트워크를 통한 Poisson Boltzmann 방정식의 시뮬레이션)

  • Jo, Gwanghyun;Shin, Kwang-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.138-139
    • /
    • 2021
  • This work introduces neural network based simulation for Poisson Boltzmann equation. First, samples are generated via a finite element method, whose pairs are used to train neural network. We report the performance of the neural network.

  • PDF

Process Control Using n Neural Network Combined with the Conventional PID Controllers

  • Lee, Moonyong;Park, Sunwon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.196-200
    • /
    • 2000
  • A neural controller for process control is proposed that combines a conventional multi-loop PID controller with a neural network. The concept of target signal based on feedback error is used fur on-line learning of the neural network. This controller is applied to distillation column control to illustrate its effectiveness. The result shows that the proposed neural controller can cope well with disturbance, strong interactions, time delays without any prior knowledge of the process.

  • PDF

Process Control Using a Neural Network Combined with the Conventional PID Controllers

  • Lee, Moonyong;Park, Sunwon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.136-139
    • /
    • 2000
  • A neural controller for process control is proposed that combines a conventional multi-loop PID controller with a neural network. The concept of target signal based on feedback error is used for on-line learning of the neural network. This controller is applied to distillation column control to illustrate its effectiveness. The result shows that the proposed neural controller can cope well with disturbance, strong interactions, time delays without any prior knowledge of the process.

  • PDF