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Process Control Using a Neural Network
Combined with the Conventional PID Controllers

Moonyong Lee and Sunwon Park

Abstract: A neural controller for process control is proposed that combines a conventional multi-loop PID controller with a
neural network. The concept of target signal based on feedback error is used for on-line learning of the neural network. This
controller is applied to distillation column control to illustrate its effectiveness. The result shows that the proposed neural controller

can cope well with disturbance, strong interactions, time delays without any prior knowledge of the process.
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I. Introduction

Many chemical processes are quite difficult to control due
to large time delays and lags, strong interactions and
nonlinearities. A typical approach to process control
involves the construction of a mathematical model
describing the dynamic system to be controlled and the
application of analytical techniques. But this approach often
fails because the process model is rarely available or often
very inaccurate due to uncertainty or complexity. Neural
network techniques have recently received widespread
attention to overcome these difficulties in process control
and offered some promising resuits[1]-[6].

When we apply a neural network to process control, we
should consider or solve two problems. One is that we can
not explicitly provide target outputs for the neural network
because in control situations the target outputs correspond to
the appropriate control inputs that give desired responses.
This is an inevitable problem due to the assumption that
process dynamics is unknown a priori. The other is the
peculiar characteristics chemical process have. In robot
system, once robots are made in factories they can be fully
trained before field implementation. Thus both the
in-operability during training and the learning speed would
not serve as critical factors. This plays a significant
attractive role in application of the neural network on robot
control. On the other hand, in chemical processes this is
certainly not the case. It is practically impossible for a
neural controller to be pre-trained before plant construction.
Moreover, even after plant implementation the learning
range should be restricted by operational safety. Therefore
in process control applications, it is highly desirable that
control and training are done simultaneously.

In this paper, we present a control scheme using a neural
network for process control applications. The neural network
alone might be used directly as a controller, but this
approach has several drawbacks: first, during the training
period, the control system is not operational; second, it
cannot eliminate unpredictable disturbances; and last, this

Manuscript received: May. 2, 2000., Accepted: June. 15, 2000.

Moonyong Lee: School of Chemical Engineering and Technology,
Yeungnam University

Sunwon Park: Dept. of Chemical Engineering, KAIST

% This work was supported by grant No. (98-0502-05-01-3) from the

basic research program of the KOSEF.

approach bears a less direct connection to the design
methods for traditional controller. To avoid these problems,
in the proposed scheme, the conventional multi-loop PID
controller is combined in parallel with the multi-layer
feedforward neural network. The simulation study for
distillation column control are carried out and various
properties of the controller are tested.

1I. Proposed control scheme

Among several architectures for neural network based
control, the feedback error learning scheme by Kawato et
al.[5] and the disturbance error learning scheme by Lee and
Park[6] have a lot of good features for process control: first,
backpropagation of the error signal through the controlled
plant is not necessary at all because the feedback error is
used as the error signal; second, the process can be
controlled even during the training period. We modified
their schemes to be aimed at the process control
applications using a conventional multi-loop PID controllers.
The architecture of the neural controller proposed in this
paper is shown in Fig. 1. In the proposed scheme,
disturbances, manipulated variables, controlled variables,
and setpoints are used as input variables for the network.
This scheme can handle regulatory problems, which are
most important in process control, as well as servo
problems. By using the conventional multi-loop PID
controller in parallel with the neural network, the control
scheme offers several important advantages compared with
the case of neural network alone: the process could remain
its flexibility and operability by the PID controller even
when the neural network is inoperable; the neural network
alone could not guarantee zero off-set at steady state against
unpredictable random uncertainties even when the network
is well trained. Although any conventional controller which
can compensate the feedback error can be used with the
neural network, the controller with integral action is
preferable for zero off-set condition at steady state.

In the proposed scheme, the error backpropagation
algorithm[7] is chosen to train the neural network. Thus, the
connection weight between the jth neuron in the (/-I)th
layer and the jth neuron in the /th layer, WJ{-,», at the (k+/)th
learning step is adjusted in the steepest descent manner as
follows:

Wy (k+1) = Wytk) + 7 AW )
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where F'(x) is the derivative of the activation function with
respect to x, and 7 is the learning coefficient.

We would Tike to modify the weights in the network so
that the square error || R-Y || 2 will be less at the end of
the next run. To train the network, we need to know the
target output, which minimizes the square error || R-Y ||,
of the network. However, unfortunately, only the error in
the final plant state, (R-Y), is available. To avoid this
problem, we introduce the concept of "targer signal". The
target signal is similar with the target output in the sense
that the neural network adjusts its weights according to the
target signal. The neural network compares its output with
the target signal instead of the target output which can not
be known a priori. In the proposed scheme, the sum of
outputs by the network and outputs by the proportional plus
derivative action in the PID controller is used as the target
signal for on-line learning. The target signal at the kth
sampling time step, 71,-(1(), is the sum of outputs at the
(k-1)th sampling time step, and is described as:

T)=Uni(k-1) + Up(k-1) + Uyk-1). “)

Note that the integral action from the PID controller must
be excluded from the target signal because it results in the
double integral action. The target signal Tk} is then
compared to the output of the neural network at the (k-/)th
sampling time step, O;(k-/). Thus, at the kth time step, é‘I/
for the output layer in Equation (2) becomes
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This target signal is different from the target output in the
sense that it does not always give a desired response.
Instead, initially the target signal may quite differ from the
desired target output. But it gradually approaches the target
output when learning is successfully accomplished. Since
the proposed target signal provides the correct gradient
direction for the network training, learning is achieved in
such a way that the square error || R-Y || » is minimized.
We wish to train the neural network with the proposed
target signal so that the sum of the outputs by proportional
and derivative actions of the PID controller is minimized.
Once the neural network is successfully trained, the
performance of the controller is naturally improved. The
better learning is achieved, the better the process is
controlled because U, + Uy is closer to zero. It should be
noted that, while backpropagation can be proven to
implement gradient descent for the desired input/output

mapping in static cases, the same does not necessarily hold
for dynamic cases. The learning algorithm of the proposed
neural controller is, at best, a heuristic for applying the
neural network to a class of control problems. No
theoretical analysis of convergence yet exists. It, however, is
clear that no stability problems are expected as long as the
tearning rate is sufficiently slower than the time constants of
the other components of the control system, as mentioned
by Psaltis et al.[4].

In Fig. 1, at each time &, all of the controlled variables
Y(k), manipulated variables U(k), disturbance D(k), setpoints
R(k) are measured. The conventional controller outputs
Udk) are then computed. Not only current but also
dominant past information on state is necessary for
considering a dynamic relationship between input and output
patterns. The buffer and pre-processor(BPP) module plays a
role of storing and scaling those signals. After one learning
step is performed, the network receives past and current
values of ¥, D, R and U as the input signals from the BPP
module and produces network outputs Un(k). Un(k) are then
added to Uck) to be applied to the process. This entire
process is repeated at each sampling time.

Initially the neural network has little influence over the
control action and most control action is performed by the
PID controller. As learning proceeds, the neural network
tries to conFig. itself so that the outputs of the PID
controller are as small as possible. Therefore, finally, most
control action is in turn carried out by the neural controller
instead of the PID controller. Since the error signal is the
input to the feedback controller, the training of the network
will lead to a gradual switching from feedback to
feedforward action as the error signal becomes small.
During training, features of the plant that are initially
unknown not taken into account by the control algorithm
are learned. Both system identification and process control
are done by the network simultaneously. An immediate
consequence of the increased use of feedforward control
action is to speed up the response of the system.

III. Application to distillation column control

To evaluate the proposed neural controller, the well
known model by Wood and Berry[8] for their
methanol-water distillation column was chosen. The model
is given by:

12.8¢ °  —18.9¢ *1. 3.8¢ "
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The controlled variables Y, and Y- are the overhead and

bottom  methanol  compositions, respectively.  The
manipulated variables U; and U, are the reflux and steam
rates, respectively. The disturbance D is the feed rate. The
steady state values of the overhead and bottom methanol
compositions are 96.25 mol % and 0.5 mol %, respectively.
Parameters of the multi-loop PID controller used were taken
from the values found by the original authors[8] as K.=0.2,

Kw=-0.04, 11=4.44, 1,=2.67. A sampling period of 3 min
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was used. Fig. 2 shows the BPP module and the specific
configuration of the network employed in this work. A
three-layered network was chosen. The input layer contains
27 neurons and receives signals comprised of Yi(k-n),
Ufk-n), R(k-n), R{k-n+1), and D(k-n), where »n=0,1,2, and
i=1,2. The hidden layer has 10 neurons. The output layer
has 2 neurons and produces the controller signals as its
outputs. The weights of the network are chosen initially
with small random numbers. All of the neurons except those
in the input layer have the hyperbolic tangent activation
function as @« (e”™-e?*)(e’*+e®*). The parameter o is
closely related to the constraints of actuators. In our
simulation, since we arbitrarily assumed the constraint of
each actuator as +0.2 Ib/min from their steady-state values,
the value of 0.2 was used. The parameter B was
empirically set as 10 and the learning coefficient 7 =0.4
was used.

Simple training patterns lasting for 900 min, which
include consecutive random step changes in each setpoint
and also consecutive disturbances in the feed flow, were
repeated until a desired performance was accomplished. For
the purpose of comparison, the Integral Square Error (ISE)
for one training cycle was used as the performance measure.
The ISEs both in bottom composition and in top
composition decreased significantly during 110 training
cycles.

Fig. 3 and 4 show the servo and regulatory control
behaviors both of the trained neural controller and the
untrained neural controller to the inexperienced consecutive
changes in setpoints and disturbance, respectively. As shown
in the Fig.s, the neural controller after training performs
tasks of both servo tracking and disturbance rejection well
and shows remarkable improvement in performance
compared to the conventional controller alone. Note that the
overall control action of the neural controller with
untrained network is the same as that of the conventional PI
controller because the network is initially set so that it has
little influence over the manipulated variables U ,i.e. U,=0.

Although the overall control action U is a simple sum of
the output by the PI controlier U. and the output by the
network U, , these two play totally different roles in
controlling the process. Fig. 5 shows how to output by the
PI controller U, and the output by the network U, act in the
trained neural controller. As the neural network adapts the
system dynamics, the portion of the control signal generated
from the network takes over the control of the system. The
result shown in Fig. 5 confirms that most control action is
performed by the neural network and only a relatively small

portion of action for feedback error is achieved by the PI
controller.

It is also demonstrated through the extensive simulation
study that the proposed neural controller has many other
desirable features such as the natural learning capability by
random input pattern, robustness against fault in connection
weights, and adaptability for system parameter changes.

IV. Conclusions

In this paper, we present a new control scheme combin-
ing the neural network with the conventional multi-loop PID
controller to aim for process control applications. The
proposed neural controller is applied to the well known
distillation column system which has significant interactions
and time delays and lags. The result shows that the pro-
posed control scheme gives the superior performance both
to servo and regulatory problems with many desirable
properties. The proposed neural controller appears to have
the potential to deal with complex process control problems.
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