• Title/Summary/Keyword: Neural reorganization

Search Result 13, Processing Time 0.217 seconds

Neural Reorganization in Retinal Outer Plexiform Layer Induced by Eccentric Viewing Training (중심외주시 훈련 후 망막 외망상층에서의 신경 재조직화)

  • Seo, Jae-Myoung
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.19 no.2
    • /
    • pp.247-252
    • /
    • 2014
  • Purpose: This study was to investigate the properties and the location of neural reorganization following eccentric viewing training. Methods: 14 subjects with normal vision took part in eccentric viewing training. The measurements of the light sensitivity and multifocal electroretinogram were performed before and after the training. Results: The measurements of the light sensitivity and multifocal electroretinogram for pre-eccentric viewing training and post-eccentric viewing training showed the significant difference (p<0.047 and p<0.028, respectively). Conclusions: The retinal outer plexiform layer is unable to regenerate. However, the neural reorganization in the retinal outer plexiform layer is able to take place following eccentric viewing training.

뇌졸중 환자에서 반복적인 양측성 운동학습 적용이 상지기능에 미치는 영향

  • Lee Myoung-Hee
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.202-222
    • /
    • 2003
  • Chronic upper extremity hemiparesis is a leading cause of functional disability after stroke. The purpose of this study were to identify effects of a 6weeks repetitive bilateral arm training on upper motor function and the reorganization of motor network. Four chronic stroke patients participated in this study. They performed for 6 consecutive weeks, 3 days a week, 30 minutes a day. In the single group study, four 5-minute periods per session of bilateral arm training were performed with the use of a custom-designed arm training machine. The results of this study was as follows. 1. Following the 6weeks period of RBAT, patient exhibited a improvement in FMA and BBT. 2. Following the 6weeks period of RBAT, it showed improvement in reaching time, symbol digit substitution and finger tapping speed of KCNT. 3. fMRI activation after RBAT showed a focal map in lesional cortical area and perilesional motor areas. These fMRI data suggest that hemodynamics response to RBAT reflect sensorimotor reorganization in contralateral hemisphere. In conclusion, these date suggest that improved upper extremity function induced by repetitive bilateral arm training after stroke is associated with reorganization of motor network as a neural basis for the improvement of paratic upper extremity function.

  • PDF

Brain Plasticity and Stroke Rehabilitation (뇌가소성과 뇌졸중 재활)

  • Kim, Sik-Hyun
    • PNF and Movement
    • /
    • v.6 no.2
    • /
    • pp.39-50
    • /
    • 2008
  • Purpose : This article reviewed the advances in the understanding of the effect of motor rehabilitation and brain plasticity on functional recovery after CNS damage. Methods : This is literature study with Pubmed, Medline and Science journal. Results : The inability of CNS neurons to regenerate is largely associated with nonneuronal aspects of the CNS environment. Especially, this neuronal growth inhibition is mediated by myelin associated glycoprotein, olygodendrocyte-myelin glycoprotein, and NOGO. Enriched environment, motor learning, forced limb use have been utilized in scientific studies to promote functional reorganization and brain plasticity. Especially, enriched environment and motor enrichment may prime the brain to respond more adaptively to injury, in part by expressed neurotrophic factors. Conclusions : These reviews suggest that activity-induced neural plasticity occur in damaged brain areas in order to functional reorganization, where it could contribute to motor recovery, and represent a target for stroke rehabilitation.

  • PDF

The prediction of interest rate using artificial neural network models

  • Hong, Taeho;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1996.04a
    • /
    • pp.741-744
    • /
    • 1996
  • Artifical Neural Network(ANN) models were used for forecasting interest rate as a new methodology, which has proven itself successful in financial domain. This research intended to construct ANN models which can maximize the performance of prediction, regarding Corporate Bond Yield (CBY) as interest rate. Synergistic Market Analysis (SMA) was applied to the construction of models [Freedman et al.]. In this aspect, while the models which consist of only time series data for corporate bond yield were devloped, the other models generated through conjunction and reorganization of fundamental variables and market variables were developed. Every model was constructed to predict 1,6, and 12 months after and we obtained 9 ANN models for interest rate forecasting. Multi-layer perceptron networks using backpropagation algorithm showed good performance in the prediction for 1 and 6 months after.

  • PDF

Neurobiological Aspects of Epistemology and Brain Areas related to Mathematical Activities (인식론의 신경 생물학적 고찰 및 수학 활동과 관련된 두뇌의 활성화)

  • Kim, Youn-Mi
    • Journal of Educational Research in Mathematics
    • /
    • v.20 no.1
    • /
    • pp.21-43
    • /
    • 2010
  • In this article three types of neuro-biological epistemology have been studied and applied to mathematics. Nativism or innatism is favored by many evolutionary psychologists and some mathematicians. They believe domain specific brain functions or modules, particularly language faculty and number instinct in infants. Number/mathematical cognition is a new research area and scientists try to localize areas related with mathematics. Selectionism has adopted Darwinism to synapse growth and supports neuronal regression. Mathematical creativity can be explained using selectionism. Neural constructivism has originated from J. Piaget and supports neuronal/synapse growth in children or adults if adequate exercise and practise is given. Unlike Piaget, neural constructivists accepts the importance of structured experience for the reorganization of brain. Authors opinion is all these theories of epistemology is equally important and they all give insights on how the brain and self is made.

  • PDF

A Review of the Neurocognitive Mechanisms for Mathematical Thinking Ability (수학적 사고력에 관한 인지신경학적 연구 개관)

  • Kim, Yon Mi
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.2
    • /
    • pp.159-219
    • /
    • 2016
  • Mathematical ability is important for academic achievement and technological renovations in the STEM disciplines. This study concentrated on the relationship between neural basis of mathematical cognition and its mechanisms. These cognitive functions include domain specific abilities such as numerical skills and visuospatial abilities, as well as domain general abilities which include language, long term memory, and working memory capacity. Individuals can perform higher cognitive functions such as abstract thinking and reasoning based on these basic cognitive functions. The next topic covered in this study is about individual differences in mathematical abilities. Neural efficiency theory was incorporated in this study to view mathematical talent. According to the theory, a person with mathematical talent uses his or her brain more efficiently than the effortful endeavour of the average human being. Mathematically gifted students show different brain activities when compared to average students. Interhemispheric and intrahemispheric connectivities are enhanced in those students, particularly in the right brain along fronto-parietal longitudinal fasciculus. The third topic deals with growth and development in mathematical capacity. As individuals mature, practice mathematical skills, and gain knowledge, such changes are reflected in cortical activation, which include changes in the activation level, redistribution, and reorganization in the supporting cortex. Among these, reorganization can be related to neural plasticity. Neural plasticity was observed in professional mathematicians and children with mathematical learning disabilities. Last topic is about mathematical creativity viewed from Neural Darwinism. When the brain is faced with a novel problem, it needs to collect all of the necessary concepts(knowledge) from long term memory, make multitudes of connections, and test which ones have the highest probability in helping solve the unusual problem. Having followed the above brain modifying steps, once the brain finally finds the correct response to the novel problem, the final response comes as a form of inspiration. For a novice, the first step of acquisition of knowledge structure is the most important. However, as expertise increases, the latter two stages of making connections and selection become more important.

A Review of the Plasticity and Constraint Induced Movement Therapy : Children With Spastic Hemiplegic Cerebral Palsy (신경가소성 원리를 이용한 강제유도운동치료에 대한 고찰: 경직성 편마비형 뇌성마비 아동을 대상으로)

  • Cho, Sang-Yoon
    • Therapeutic Science for Rehabilitation
    • /
    • v.2 no.1
    • /
    • pp.13-23
    • /
    • 2013
  • Constraint-Induced Movement Therapy(CIMT) is considered as one of the most interesting upper extremity rehabilitation in the field of neurorehabilitation. CIMT is an intensive training provided in the affected upper limb for 6 hours a day, 5 days a week for 2 weeks, while unaffected arm is restrained for 90% of waking hours. Recently, instead of CIMT, modified Constraint-Induced Movement Therapy(mCIMT) has been applied because of the clinical limitations of CIMT. CIMT or mCIMT studies have used various outcome instruments to measure different aspects of upper limb function after intervention. There are various kinds of evaluation tools to measure different aspects of upper limb function after CIMT intervention. It has been proven that Pediatric Motor Activity Log(PMAL), Quality of Upper Extremities Skills Test(QUEST), Melbourne Assessment of Unilateral Upper Limb Function(MAULF), Assisting Hand Assessment (AHA) are effective. The purpose of this study was to investigate the cortical change in children with hemiplegic cerebral palsy after CIMT. As a result, use-dependent cortical reorganization was revealed. Also, increased activity of the contralateral motor cortex and decreased activity of the ipsilateral cortex were found. It supports the mechanism of cortical reorganization, the principles of neural plasticity and specifically activation of the contralateral cortex, for improving upper limb function after CIMT.

The Effect on Activity of Cerebral Cortex by Key-point Control of The Adult Hemiplegia with fMRI (fMRI를 이용한 성인 편마비의 항조절점 운동이 대뇌피질의 활성화에 미치는 효과)

  • Lee Won-Kil
    • The Journal of Korean Physical Therapy
    • /
    • v.15 no.3
    • /
    • pp.295-345
    • /
    • 2003
  • This study investigated activation of cerebral cortex in patients with hemiplegia that was caused by neural damage. Key-point control movement therapy of Bobath was performed for 9 weeks in 3 subjects with hemiplegia and fMRI was used to compare and analyze activated degree of cerebral cortex in these subjects. fMRI was conducted using the blood oxygen level-dependent(BOLD) technique at 3.0T MR scanner with a standard head coil. The motor activation task consisted of finger flexion-extension exercise in six cycles(one half-cycles = 8 scans = $3\;sec{\times}\;8\;=\;24\;sec$). Subjects performed this task according to visual stimulus that sign of right hand or left hand twinkled(500ms on, 500ms off). After mapping activation of cerebral motor cortex on hand motor function, below results were obtained. 1. Activation decreased in primary motor area, whereas it increased in supplementary motor area and visual association area(p<.001). 2. Activation was observed in bilateral medial frontal gyrus, middle frontal gyrus of left cerebrum, inferior frontal gyrus, inter-hemispheric, fusiform gyrus of right cerebrum, superior parietal lobule of parietal lobe and precuneus in subjedt 1, parahippocampal gyrus of limbic lobe and cingulate gyrus in subject 2, and inferior frontal gyrus of right frontal lobe, middle frontal gyrus, and inferior parietal lobule of left cerebrum in subject 3 (p<.001). 3. Activation cluster extended in declive of right cellebellum posterior lobe in subject 1, culmen of anterior lobe and declive of posterior lobe in subject 2, and dentate gyrus of anterior lobe, culmen and tuber of posterior lobe in subject 3 (p<.001). In conclusion, these data showed that Key-point control movement therapy of Bobath after stroke affect cerebral cortex activation by increasing efficiency of cortical networks. Therefore mapping of brain neural network activation is useful for plasticity and reorganization of cerebral cortex and cortico-spinal tract of motor recovery mechanisms after stroke.

  • PDF

Action Observation and Cortical Connectivity: Evidence from EEG Analysis

  • Kim, Sik-Hyun;Cho, Jeong-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.6
    • /
    • pp.398-407
    • /
    • 2016
  • Purpose: The purpose of this study was to examine the changes in electroencephalogram (EEG) coherence and brain wave activity for first-person perspective action observation (1AO) and third-person perspective action observation (3AO) of healthy subjects. Methods: Thirty healthy subjects participated in this study. EEG was simultaneously recorded during the Relax period, the 1AO, and the 3AO, with event-related desynchronization (ERD) and coherence connectivity process calculations for brain wave (alpha, beta and mu) rhythms in relation to the baseline. Results: Participants showed increased coherence in beta wave activity in the frontal and central areas (p<0.05), during the 1AO using right-hand activity. Conversely, the coherence of the alpha wave decreased statistically significantly decreased in the frontocentral and parieto-occipital networks during the observation of the 1AO and the 3AO. The ERD values were larger than 40% for both central regions but were slightly higher for the C4 central region. The high relative power of the alpha wave during 1AO and 3AO was statistically significantly decreased in the frontal, central, parietal, and occipital regions. However, the relative power of the beta wave during 1AO and 3AO was statistically significantly increased in the parietal and occipital regions. Especially during 1AO, the relative power of the beta wave in the C3 area was statistically significantly increased (p<0.05). Conclusion: These findings suggest that 1AO and 3AO action observations are relevant to modifications of specific brain wave coherence and ERD values. EEG cortical activity during action observation may contribute to neural reorganization and to adaptive neuroplasticity in clinical intervention.

Activations of Cerebral and Cerebellar Cortex Induced by Repetitive Bilateral Motor Excercise (반복적 양측 운동학습에 따른 대뇌 및 소뇌 피질 활성화)

  • Tae, Ki-Sik;Song, Sung-Jae;Kim, Young-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.139-147
    • /
    • 2007
  • The aim of this study was to evaluate effects of short-tenn repetitive-bilateral excercise on the activation of motor network using functional magnetic resonance imaging (fMRI). The training program was performed at 1 hr/day, 5 days/week during 6 weeks. Fugl-Meyer Assessments (FMA) were performed every two weeks during the training. We compared cerebral and cerebellar cortical activations in two different tasks before and after the training program: (1) the only unaffected hand movement (Task 1); and (2) passive movements of affected hand by the active movement of unaffected hand (Task 2). fMRI was performed at 3T with wrist flexion-extension movement at 1 Hz during the motor tasks. All patients showed significant improvements of FMA scores in their paretic limbs after training. fMRI studies in Task 1 showed that cortical activations decreased in ipsilateral sensorimotor cortex but increased in contralateral sensorimotor cortex and ipsilateral cerebellum. Task 2 showed cortical reorganizations in bilateral sensorimotor cortex, premotor area, supplemetary motor area and cerebellum. Therefore, this study demonstrated that plastic changes of motor network occurred as a neural basis of the improvement subsequent to repetitive-bilateral excercise using the symmetrical upper-limb ann motion trainer.