• Title/Summary/Keyword: Neural networks modeling

Search Result 387, Processing Time 0.025 seconds

Pan Evaporation Analysis using Nonlinear Disaggregation Model (비선형 분리모형에 의한 증발접시 증발량의 해석)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1147-1150
    • /
    • 2008
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of the support vector machines neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The SVM-NNM in time series modeling is relatively new and it is more problematic in comparison with classifications. In this study, The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Fuzzy Relation-Based Fuzzy Neural-Networks Using a Hybrid Identification Algorithm

  • Park, Ho-Seung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.289-300
    • /
    • 2003
  • In this paper, we introduce an identification method in Fuzzy Relation-based Fuzzy Neural Networks (FRFNN) through a hybrid identification algorithm. The proposed FRFNN modeling implement system structure and parameter identification in the efficient form of "If...., then... " statements, and exploit the theory of system optimization and fuzzy rules. The FRFNN modeling and identification environment realizes parameter identification through a synergistic usage of genetic optimization and complex search method. The hybrid identification algorithm is carried out by combining both genetic optimization and the improved complex method in order to guarantee both global optimization and local convergence. An aggregate objective function with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. The proposed model is experimented with using two nonlinear data. The obtained experimental results reveal that the proposed networks exhibit high accuracy and generalization capabilities in comparison to other models.er models.

Neural Networks-Based Damage Detection for Bridges Considering Errors in Baseline Finite Element Models (모델링 오차를 고려한 신경망 기법 기반 손상추정방법)

  • Lee, Jong-Jae;Yun, Chung-Bang;Lee, Jong-Won;Jung, Hie-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.382-387
    • /
    • 2003
  • In this paper, a neural networks-based damage detection method using the modal properties is presented, which can effectively reduce the effect of the modeling errors in the baseline finite element model from which the training patterns for the networks are to be generated. The differences or the ratios of the mode shape components between before and after damage are used as the input to the neural networks in this method, since they are found to be less sensitive to the modeling errors than the mode shapes themselves. Results of laboratory test on a simply supported bridge model and field test on a bridge with multiple girders confirm the applicability of the present method.

  • PDF

Hybrid Fuzzy Neural Networks by Means of Information Granulation and Genetic Optimization and Its Application to Software Process

  • Park, Byoung-Jun;Oh, Sung-Kwun;Lee, Young-Il
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.7 no.2
    • /
    • pp.132-137
    • /
    • 2007
  • Experimental software data capturing the essence of software projects (expressed e.g., in terms of their complexity and development time) have been a subject of intensive modeling. In this study, we introduce a new category of Hybrid Fuzzy Neural Networks (gHFNN) and discuss their comprehensive design methodology. The gHFNN architecture results from highly synergistic linkages between Fuzzy Neural Networks (FNN) and Polynomial Neural Networks (PNN). We develop a rule-based model consisting of a number of "if-then" statements whose antecedents are formed in the input space and linked with the consequents (conclusion pats) formed in the output space. In this framework, FNNs contribute to the formation of the premise part of the overall network structure of the gHFNN. The consequences of the rules are designed with the aid of genetically endowed PNNs. The experiments reported in this study deal with well-known software data such as the NASA dataset. In comparison with the previously discussed approaches, the proposed self-organizing networks are more accurate and yield significant generalization abilities.

The study on the Optimal Control of Linear Track Cart Double Inverted Pendulum using neural network (신경망을 이용한 Liner Track Cart Double Inverted Pendulum의 최적제어에 관한 연구)

  • 金成柱;李宰炫;李尙培
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.227-233
    • /
    • 1996
  • The Inverted Pendulum has been one of most popular nonlinear dynamic systems for the exploration of control techniques. This paper presents a new linear optimal control techniques and nonlinear neural network learning methods. The multiayered neural networks are used to add nonlinear effects on the linear optimal regulator(LQR). The new regulator can compensate nonlinear system uncertainties that are not considered in the LQR design, and can tolerated a wider range of uncertainties than the LQR alone. The new regulator has two neural networks for modeling and control. The neural network for modeling is used to obtain a more accurate model than the given mathematical equations. The neural network for control is used to overcome deficiencies by adding corrections to the linear coefficients of the LQR and by adding nonlinear effects on the LQR. Computer simulations are performed to show the applicability and a more robust regulator than the LQR alone.

  • PDF

Hydrologic Modeling Approach using Time-Lag Recurrent Neural Networks Model (시간지체 순환신경망모형을 이용한 수문학적 모형화기법)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1439-1442
    • /
    • 2010
  • Time-lag recurrent neural networks model (Time-Lag RNNM) is used to estimate daily pan evaporation (PE) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$) and mean relative humidity ($RH_{mean}$). And, for the performances of Time-Lag RNNM, it is composed of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of Time-Lag RNNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily PE using Time-Lag RNNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as pan evaporation modeling can be generalized using Time-Lag RNNM.

  • PDF

Modeling of Time Series for Irrigation and Drainage Networks System (관개배수 네트워크 시스템 구축을 위한 시계열자료의 모형화)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1645-1648
    • /
    • 2010
  • The goal of this research is to apply the neural networks model for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks model consists of recurrent neural networks model (RNNM). The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks model, it is composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of RNNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

A Study on the Pattern Recognition of Hole Defect using Neural Networks (신경회로망을 이용한 원공 결함 패턴 인식에 관한 연구)

  • 이동우;홍순혁;조석수;주원식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.146-153
    • /
    • 2003
  • Ultrasonic inspection of defects has been focused on the existence of defect in structural material and need has much time and expenses in inspecting all the coordinates (x, y) on material surface. Neural networks can have an application to coordinates (x, y) of defects by multi-point inspection method. Ultrasonic inspection modeling is optimized by neural networks Neural networks has trained training example of absolute and relative coordinate of defects, and defect pattern. This method can predict coordinates (x, y) of defects within engineering estimated mean error $\psi$.

Trip Generation Model Using Backpropagation Neural Networks in Comparison with linear/nonlinear Regression Analysis (신경망 이론을 이용한 통행발생 모형연구 (선형/비선형 회귀모형과의 비교))

  • 장수은;김대현;임강원
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.4
    • /
    • pp.95-105
    • /
    • 2000
  • The Purpose of this study is to present a new Trip Generation Model using Backpropagation Neural Networks. For this purpose, it is compared the performance between existing linear/nonlinear Regression models and a new TriP Generation model using Neural Networks. The study was performed according to the below. First, it is analyzed the limits of conventional Regression models, next Proved the superiority of Neural Networks model in theoretical and empirical aspects, and lastly Presented a new approach of Trip Generation methodology. The results show that Backpropagation Neural Networks model is predominant in estimation and Prediction comparable to Regression analysis. Such results mean the possibility of Neural Networks\` application in Trip Generation modeling. Specially under the circumstances of the chancing transportation situations and unstable transportation on vironments, its application in transportation fields will be extended.

  • PDF

A Study on Fatigue Damage Modeling Using Neural Networks

  • Lee Dong-Woo;Hong Soon-Hyeok;Cho Seok-Swoo;Joo Won-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.7
    • /
    • pp.1393-1404
    • /
    • 2005
  • Fatigue crack growth and life have been estimated based on established empirical equations. In this paper, an alternative method using artificial neural network (ANN) -based model developed to predict fatigue damages simultaneously. To learn and generalize the ANN, fatigue crack growth rate and life data were built up using in-plane bending fatigue test results. Single fracture mechanical parameter or nondestructive parameter can't predict fatigue damage accurately but multiple fracture mechanical parameters or nondestructive parameters can. Existing fatigue damage modeling used this merit but limited real-time damage monitoring. Therefore, this study shows fatigue damage model using backpropagation neural networks on the basis of X -ray half breadth ratio B / $B_o$, fractal dimension $D_f$ and fracture mechanical parameters can estimate fatigue crack growth rate da/ dN and cycle ratio N / $N_f$ at the same time within engineering limit error ($5\%$).