• 제목/요약/키워드: Neural networks model

검색결과 1,850건 처리시간 0.032초

신경망을 이용한 근사 해석 모델의 원형 개발 (Development of the Prototype of the Approximate Analytical Model Using the Neural Networks)

  • 이승창;박승권
    • 전산구조공학
    • /
    • 제10권2호
    • /
    • pp.273-281
    • /
    • 1997
  • 대량의 복잡한 비선형적인 관계도 단순화의 과정 없이 연관 관계를 자체 조직화 할 수 있는 인간의 뇌와 가장 유사한 병렬 연산 모델인 인공 신경 회로망을 구조 해석 분야에 도입하였다. 본 논문은 스터브 거더의 거동 예측을 위한 신경망 근사해석 모델 개발을 궁극적인 목적으로 하는 기초적 연구로서, 단순 보의 처짐 문제와 같은 정확해를 구할 수 있는 문제로부터 신경망 근사해석모델의 원형 (prototype)을 제시하고 검증하는데 목적이 있다.

  • PDF

신경 회로망을 이용한 증기 발생기의 폐 루프 시스템 규명 (Closed Loop System Identification of Steam Generator Using Neural Networks)

  • 박종호;한후석;정길도
    • 한국정밀공학회지
    • /
    • 제16권12호
    • /
    • pp.78-86
    • /
    • 1999
  • The improvement of the water level control is important since it will prevent the steam generator trip so that improve the reliability and credibility of operation system. In this paper, the closed loop system identification is performed which can be used for the system monitoring and prediction of the system response. The model also can be used for the prediction control. Irving model is used as a steam generator model. The plant is an open loop unstable and non-minimum phase system. Fuzzy controller stabilize the system and the stable controller stabilize the system and the stable closed loop system is identified using neural networks. The obtained neural network model is validated using the untrained input and output. The results of computer simulation show the obtained Neural Network model represents the closed loop system well.

  • PDF

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • 제7권4호
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

한국과 미국간 항공기 탑승객 수 예측을 위한 뉴럴네트웍의 응용

  • 남경두
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1995년도 추계학술대회발표논문집; 서울대학교, 서울; 30 Sep. 1995
    • /
    • pp.334-343
    • /
    • 1995
  • In recent years, neural networks have been developed as an alternative to traditional statistical techniques. In this study, a neural network model was compared to traditional forecasting models in terms of their capabilities to forecast passenger traffic for flights between U.S. and Korea. The results show that the forecasting ability of the neural networks was superior to the traditional models. In terms of accuracy, the performance of the neural networks was quite encouraging. Using mean absolute deviation, the neural network performed best. The new technique is easy to learn and apply with commercial neural network software. Therefore, airline decision makers should benefit from using neural networks in forecasting passenger loads.

  • PDF

군집 신경망기법을 이용한 해상풍력발전기 지지구조물의 건전성 모니터링 기법 (Health Monitoring Method for Monopile Support Structure of Offshore Wind Turbine Using Committee of Neural Networks)

  • 이종원;김상렬;김봉기;이준신
    • 한국소음진동공학회논문집
    • /
    • 제23권4호
    • /
    • pp.347-355
    • /
    • 2013
  • A damage estimation method for monopile support structure of offshore wind turbine using modal properties and committee of neural networks is presented for effective structural health monitoring. An analytical model for a monopile support structure is established, and the natural frequencies, mode shapes, and mode shape slopes for the support structure are calculated considering soil condition and added mass. The input to the neural networks consists of the modal properties and the output is composed of the stiffness indices of the support structure. Multiple neural networks are constructed and each individual network is trained independently with different initial synaptic weights. Then, the estimated stiffness indices from different neural networks are averaged. Ten damage cases are estimated using the proposed method, and the identified damage locations and severities agree reasonably well with the exact values. The accuracy of the estimation can be improved by applying the committee of neural networks which is a statistical approach averaging the damage indices in the functional space.

Acceleration-based neural networks algorithm for damage detection in structures

  • Kim, Jeong-Tae;Park, Jae-Hyung;Koo, Ki-Young;Lee, Jong-Jae
    • Smart Structures and Systems
    • /
    • 제4권5호
    • /
    • pp.583-603
    • /
    • 2008
  • In this study, a real-time damage detection method using output-only acceleration signals and artificial neural networks (ANN) is developed to monitor the occurrence of damage and the location of damage in structures. A theoretical approach of an ANN algorithm that uses acceleration signals to detect changes in structural parameters in real-time is newly designed. Cross-covariance functions of two acceleration responses measured before and after damage at two different sensor locations are selected as the features representing the structural conditions. By means of the acceleration features, multiple neural networks are trained for a series of potential loading patterns and damage scenarios of the target structure for which its actual loading history and structural conditions are unknown. The feasibility of the proposed method is evaluated using a numerical beam model under the effect of model uncertainty due to the variability of impulse excitation patterns used for training neural networks. The practicality of the method is also evaluated from laboratory-model tests on free-free beams for which acceleration responses were measured for several damage cases.

Covariance Phasor Neural Network as a Mean field model

  • Takahashi, Haruhisa
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.18-21
    • /
    • 2002
  • We present a phase covariance model that can well represent stimulus intensity as well af feature binding (i.e., covariance). The model is represented by complex neural equations, which is a mean field model of stochastic neural model such as Boltzman machine and sigmoid belief networks.

  • PDF

Neural Network Model for Construction Cost Prediction of Apartment Projects in Vietnam

  • Luu, Van Truong;Kim, Soo-Yong
    • 한국건설관리학회논문집
    • /
    • 제10권3호
    • /
    • pp.139-147
    • /
    • 2009
  • Accurate construction cost estimation in the initial stage of building project plays a key role for project success and for mitigation of disputes. Total construction cost(TCC) estimation of apartment projects in Vietnam has become more important because those projects increasingly rise in quantity with the urbanization and population growth. This paper presents the application of artificial neural networks(ANNs) in estimating TCC of apartment projects. Ninety-one questionnaires were collected to identify input variables. Fourteen data sets of completed apartment projects were obtained and processed for training and generalizing the neural network(NN). MATLAB software was used to train the NN. A program was constructed using Visual C++ in order to apply the neural network to realistic projects. The results suggest that this model is reasonable in predicting TCCs for apartment projects and reinforce the reliability of using neural networks to cost models. Although the proposed model is not validated in a rigorous way, the ANN-based model may be useful for both practitioners and researchers. It facilitates systematic predictions in early phases of construction projects. Practitioners are more proactive in estimating construction costs and making consistent decisions in initial phases of apartment projects. Researchers should benefit from exploring insights into its implementation in the real world. The findings are useful not only to researchers and practitioners in the Vietnam Construction Industry(VCI) but also to participants in other developing countries in South East Asia. Since Korea has emerged as the first largest foreign investor in Vietnam, the results of this study may be also useful to participants in Korea.

신경회로망을 이용한 산업용 로봇(AM1)의 역보정에 관한 연구 (A Study on the Inverse Calibration of Industrial Robot(AM1) Using Neural Networks)

  • 안인모
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1999년도 추계학술대회 논문집 - 한국공작기계학회
    • /
    • pp.131-136
    • /
    • 1999
  • This paper proposes the robot inverse calibration method using a neural networks. A highorder networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the difference of joint variables only between measuring value and analytic value about the desired pose(position, orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from $\pm$2$^{\circ}$to $\pm$ 0.1$^{\circ}$.

  • PDF

Pi-Sigma 신경 회로망을 이용한 로봇의 역 보정 (The Robot Inverse Calibration Using a Pi-Sigma Neural Networks)

  • 정재원;김수현;곽윤근
    • 한국정밀공학회지
    • /
    • 제14권12호
    • /
    • pp.86-94
    • /
    • 1997
  • This paper proposes the robot inverse calibration method using a neural networks. A high-order networks called Pi-Sigma networks has been used. The Pi-Sigma networks uses linear summing units in the hidden layer and product unit in output layer. The inverse calibration model which compensates the diff- erence of joint variables only between measuring value and analytic value about the desired pose(position, orientation) of a robot is proposed. The compensated values are determined by using the weights obtained from the learning process of the neural networks previously. To prove the reasonableness, the SCARA type direct drive robot(4-DOF) and anthropomorphic robot(6-DOF) are simulated. It shows that the proposed calibration method can reduce the errors of the joint variables from .+-. 5 .deg. to .+-. 0.1 .deg. .

  • PDF