• 제목/요약/키워드: Neural network control

검색결과 2,589건 처리시간 0.033초

Optimum design and vibration control of a space structure with the hybrid semi-active control devices

  • Zhan, Meng;Wang, Sheliang;Yang, Tao;Liu, Yang;Yu, Binshan
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.341-350
    • /
    • 2017
  • Based on the super elastic properties of the shape memory alloy (SMA) and the inverse piezoelectric effect of piezoelectric (PZT) ceramics, a kind of hybrid semi-active control device was designed and made, its mechanical properties test was done under different frequency and different voltage. The local search ability of genetic algorithm is poor, which would fall into the defect of prematurity easily. A kind of adaptive immune memory cloning algorithm(AIMCA) was proposed based on the simulation of clone selection and immune memory process. It can adjust the mutation probability and clone scale adaptively through the way of introducing memory cell and antibody incentive degrees. And performance indicator based on the modal controllable degree was taken as antigen-antibody affinity function, the optimization analysis of damper layout in a space truss structure was done. The structural seismic response was analyzed by applying the neural network prediction model and T-S fuzzy logic. Results show that SMA and PZT friction composite damper has a good energy dissipation capacity and stable performance, the bigger voltage, the better energy dissipation ability. Compared with genetic algorithm, the adaptive immune memory clone algorithm overcomes the problem of prematurity effectively. Besides, it has stronger global searching ability, better population diversity and faster convergence speed, makes the damper has a better arrangement position in structural dampers optimization leading to the better damping effect.

IoT센서로 수집된 균질 시간 데이터를 이용한 기계학습 기반의 품질관리 및 데이터 보정 (Machine Learning-based Quality Control and Error Correction Using Homogeneous Temporal Data Collected by IoT Sensors)

  • 김혜진;이현수;최병진;김용혁
    • 한국융합학회논문지
    • /
    • 제10권4호
    • /
    • pp.17-23
    • /
    • 2019
  • 본 논문은 온도 등 7 가지의 IoT 센서에서 수집된 기상데이터의 각 기상요소에 대하여 품질관리(Quality Control; QC)를 하였다. 또한, 우리는 측정된 값에 오류가 있는 데이터를 기계학습으로 의미있게 추정하는 방법을 제안한다. 수집된 기상데이터를 기본 QC 결과를 바탕으로 오류 데이터를 선형 보간하여 기계학습 QC를 진행하였으며, 기계학습 기법으로는 대표적인 서포트벡터회귀, 의사결정테이블, 다층퍼셉트론을 사용했다. 기본 QC의 적용 유무에 따라 비교해 보았을 때, 우리는 기본 QC를 거쳐 보간한 기계학습 모델들의 평균절대오차(MAE)가 21% 낮은 것을 확인할 수 있었다. 또한, 기계학습 기법에 따라 비교하여 서포트벡터회귀 모델을 적용하였을 때가, 모든 기상 요소에 대하여 MAE가 평균적으로 다층신경망은 24%, 의사결정테이블은 58% 낮은 것을 알 수 있었다.

라이시미터 데이터로 학습한 수학적 및 심층 신경망 모델을 통한 온실 토마토 증산량 추정 (Estimation of Greenhouse Tomato Transpiration through Mathematical and Deep Neural Network Models Learned from Lysimeter Data)

  • 메안 P 안데스;노미영;임미영;최경이;정정수;김동필
    • 생물환경조절학회지
    • /
    • 제32권4호
    • /
    • pp.384-395
    • /
    • 2023
  • 증산은 적정 관수 관리에 중요한 역할을 하므로 수분 스트레스에 취약한 토마토와 같은 작물의 관개 수요에 대한 지식이 필요하다. 관수량을 결정하는 한 가지 방법은 증산량을 측정하는 것인데, 이는 환경이나 생육 수준의 영향을 받는다. 본 연구는 분단위 데이터를 통해 수학적 모델과 딥러닝 모델을 활용하여 토마토의 증발량을 추정하고 적합한 모델을 찾는 것을 목표로 한다. 라이시미터 데이터는 1분 간격으로 배지무게 변화를 측정함으로써 증산량을 직접 측정했다. 피어슨 상관관계는 관찰된 환경 변수가 작물 증산과 유의미한 상관관계가 있음을 보여주었다. 온실온도와 태양복사는 증산량과 양의 상관관계를 보인 반면, 상대습도는 음의 상관관계를 보였다. 다중 선형 회귀(MLR), 다항 회귀 모델, 인공 신경망(ANN), Long short-term memory(LSTM), Gated Recurrent Unit(GRU) 모델을 구축하고 정확도를 비교했다. 모든 모델은 테스트 데이터 세트에서 0.770-0.948 범위의 R2 값과 0.495mm/min-1.038mm/min의 RMSE로 증산을 잠재적으로 추정하였다. 딥러닝 모델은 수학적 모델보다 성능이 뛰어났다. GRU는 0.948의 R2 및 0.495mm/min의 RMSE로 테스트 데이터에서 최고의 성능을 보여주었다. LSTM과 ANN은 R2 값이 각각 0.946과 0.944, RMSE가 각각 0.504m/min과 0.511로 그 뒤를 이었다. GRU 모델은 단기 예측에서 우수한 성능을 보였고 LSTM은 장기 예측에서 우수한 성능을 보였지만 대규모 데이터 셋을 사용한 추가 검증이 필요하다. FAO56 Penman-Monteith(PM) 방정식과 비교하여 PM은 MLR 및 다항식 모델 2차 및 3차보다 RMSE가 0.598mm/min으로 낮지만 분단위 증산의 변동성을 포착하는 데 있어 모든 모델 중에서 가장 성능이 낮다. 따라서 본 연구 결과는 온실 내 토마토 증산을 단기적으로 추정하기 위해 GRU 및 LSTM 모델을 권장한다.

데이터 마이닝을 이용한 시멘트 소성공정 질소산화물(NOx)배출 관리 방법에 관한 연구 (A Study on NOx Emission Control Methods in the Cement Firing Process Using Data Mining Techniques)

  • 박철홍;김용수
    • 품질경영학회지
    • /
    • 제46권3호
    • /
    • pp.739-752
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the relationship between kiln processing parameters and NOx emissions that occur in the sintering and calcination steps of the cement manufacturing process and to derive the main factors responsible for producing emissions outside emission limit criteria, as determined by category models and classification rules, using data mining techniques. The results from this study are expected to be useful as guidelines for NOx emission control standards. Methods: Data were collected from Precalciner Kiln No.3 used in one of the domestic cement plants in Korea. Thirty-four independent variables affecting NOx generation and dependent variables that exceeded or were below the NOx emiision limit (>1 and <0, respectively) were examined during kiln processing. These data were used to construct a detection model of NOx emission, in which emissions exceeded or were below the set limits. The model was validated using SPSS MODELER 18.0, artificial neural network, decision treee (C5.0), and logistic regression analysis data mining techniques. Results: The decision tree (C5.0) algorithm best represented NOx emission behavior and was used to identify 10 processing variables that resulted in NOx emissions outside limit criteria. Conclusion: The results of this study indicate that the decision tree (C5.0) can be applied for real-time monitoring and management of NOx emissions during the cement firing process to satisfy NOx emission control standards and to provide for a more eco-friendly cement product.

신경컴퓨터(Neural Network)을 이용한 로보트 제어

  • 오세영
    • 정보와 통신
    • /
    • 제9권11호
    • /
    • pp.70-79
    • /
    • 1992
  • 제6세대 컴퓨터로 불리는 신경컴퓨터는 학습과 병렬처리에 의해 인간의 두뇌 기능을 모방한다. 인간의 두뇌는 시각인식, 음성인식, 촉각감지 등 패턴인식뿐 아니라 인간의 복잡한 신체구조를 시각, 촉각 같은 감각기관의 도움을 얻어 움직이는 중요한 역할도 한다. 바로 이 모터제어(motor control) 역시 신경회로가 담당하기 때문에 이를 기계적 신체에 해당하는 로보트 또는 광범위하게 기계, 비행기, 산업공정에 응용하는 것은 매우 자연스럽게 보인다. 이처럼 신경회로가 제어에 응용되는 것을 신경제어 (neurocontrol)라 하고 이를 이용한 기계를 지능기계(intelligent machinery)라 한다. 지능기계는 기본적으로 인간처럼 경험축적 학습 불확실한 환경에서의 적응 자기진단 등의 장점을 가지고 있다. 신경회로의 지극히 광범위한 응용분야중 신경제어는 가장 먼저 실현될 가능성이 높다. 실제로 로보트나 공정제어(process control)처럼 복잡한 비선형 시스템의 제어는 다량의 센서 정보에 기초한 실시간 제어를 필수로 하며 이는 신경회로를 사용함으로써 가장 효율적, 경제적으로 구현할 수 있다. 실제로 신경제어는 전세계적으로 이미 시스템 제어에 응용되어 좋은 결과를 내고 있다. 신경회로의 로보트나 자동화 응용은 학술적인 측면에서는 복잡한 비선형 시스템의 지능제어 (intelligent control)문제에 대한 신선한 해결책을 마련해줄 뿐 아니라 산업자동화라는 막대한 시장을 뒤로 하고 있어 이론에서 실제에 걸쳐 가장 광범위한 파급효과를 가지는 최첨단 기술로 보여진다. 고부가가치 상품을 통한 국제 경쟁력 제고의 차원에서도 정부, 기업 등의 과감한 연구 개발투자가 선행되어야 한다. 특히 이 분야의 연구는 선진국도 최근에 시작한 점으로 보아 정부, 기업이 이에 대한 연구 개발투자를 현명하게 할 경우에 세계적 기술 경쟁력도 확보할 수 있을 것이다. 본 해설에서는 로보트 및 시스템 제어에 관한 기초 이론을 설명하고 신경회로 적용기술을 소개하고 기존 방법과 비교 했을 때의 우월성, 전세계적인 응용연구, 국내외 연구개발 현황, 상업화 가능성, 산업계 응용례, 기술상의 문제점, 향후 전망 등을 다루기로 한다.

  • PDF

유도전동기 드라이브의 고성능 제어를 위한 PI, FNN 및 ALM-FNN 제어기의 비교연구 (Comparative Study of PI, FNN and ALM-FNN for High Control of Induction Motor Drive)

  • 강성준;고재섭;최정식;장미금;백정우;정동화
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2009년도 춘계학술대회 논문집
    • /
    • pp.408-411
    • /
    • 2009
  • In this paper, conventional PI, fuzzy neural network(FNN) and adaptive teaming mechanism(ALM)-FNN for rotor field oriented controlled(RFOC) induction motor are studied comparatively. The widely used control theory based design of PI family controllers fails to perform satisfactorily under parameter variation nonlinear or load disturbance. In high performance applications, it is useful to automatically extract the complex relation that represent the drive behaviour. The use of learning through example algorithms can be a powerful tool for automatic modelling variable speed drives. They can automatically extract a functional relationship representative of the drive behavior. These methods present some advantages over the classical ones since they do not rely on the precise knowledge of mathematical models and parameters. Comparative study of PI, FNN and ALM-FNN are carried out from various aspects which is dynamic performance, steady-state accuracy, parameter robustness and complementation etc. To have a clear view of the three techniques, a RFOC system based on a three level neutral point clamped inverter-fed induction motor drive is established in this paper. Each of the three control technique: PI, FNN and ALM-FNN, are used in the outer loops for rotor speed. The merit and drawbacks of each method are summarized in the conclusion part, which may a guideline for industry application.

  • PDF

외란의 변화가 있는 PMSM의 강인하고 정밀한 위치 제어에 대한 연구 (A Study on Robust and Precise Position Control of PMSM under Disturbance Variation)

  • 이익선;여원석;정성철;박건호;고종선
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1423-1433
    • /
    • 2018
  • Recently, a permanent magnet synchronous motor of middle and small-capacity has high torque, high precision control and acceleration / deceleration characteristics. But existing control has several problems that include unpredictable disturbances and parameter changes in the high accuracy and rigidity control industry or nonlinear dynamic characteristics not considered in the driving part. In addition, in the drive method for the control of low-vibration and high-precision, the process of connecting the permanent magnet synchronous motor and the load may cause the response characteristic of the system to become very unstable, to cause vibration, and to overload the system. In order to solve these problems, various studies such as adaptive control, optimal control, robust control and artificial neural network have been actively conducted. In this paper, an incremental encoder of the permanent magnet synchronous motor is used to detect the position of the rotor. And the position of the detected rotor is used for low vibration and high precision position control. As the controller, we propose augmented state feedback control with a speed observer and first order deadbeat disturbance observer. The augmented state feedback controller performs control that the position of the rotor reaches the reference position quickly and precisely. The addition of the speed observer to this augmented state feedback controller compensates for the drop in speed response characteristics by using the previously calculated speed value for the control. The first order deadbeat disturbance observer performs control to reduce the vibration of the motor by compensating for the vibrating component or disturbance that the mechanism has. Since the deadbeat disturbance observer has a characteristic of being vulnerable to noise, it is supplemented by moving average filter method to reduce the influence of the noise. Thus, the new controller with the first order deadbeat disturbance observer can perform more robustness and precise the position control for the influence of large inertial load and natural frequency. The simulation stability and efficiency has been obtained through C language and Matlab Simulink. In addition, the experiment of actual 2.5[kW] permanent magnet synchronous motor was verified.

자동차 ECU제어를 위한 음성인식 패턴매칭레벨에 관한 연구 (A Study on Voice Recognition Pattern matching level for Vehicle ECU control)

  • 안종영;김영섭;김수훈;허강인
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.75-80
    • /
    • 2010
  • 자동차 환경에서의 음성인식은 잡음처리가 매우 중요한 요소이다. 하드웨어 및 소프트웨어로 적인 접근방법으로 많은 연구가 되어 지고 있다. 하드웨어적인 방법으로는 Low-pass filter를 기본으로한 잡음처리 필터가 많이 연구되어 가시적인 성과를 보이고 있고, 소프트웨어적으로는 Noise canceler, 신경망 등 패턴인식 알고리듬의 연구가 이루어지고 있다. 본 논문에서는 시계열 패턴인식에 적용 가능한 알고리듬인 DTW(Dynamic Time Warping)를 자동차 잡음환경에 적용하여 그 음성인식을 위한 파라미터 패턴에 대한 매칭 레벨을 분류하여 잡음환경 적합한 패턴 매칭 레벨을 분석 하였다.

Comparative Study of Knowledge Extraction on the Industrial Applications

  • Woo, Young-Kwang;Bae, Hyeon;Kim, Sung-Shin;Woo, Kwang-Bang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1338-1343
    • /
    • 2003
  • Data is the expression of the language or numerical values that show some characteristics. And information is extracted from data for the specific purposes. The knowledge is utilized as information to construct rules that recognize patterns and make decisions. Today, knowledge extraction and application of the knowledge are broadly accomplished to improve the comprehension and to elevate the performance of systems in several industrial fields. The knowledge extraction could be achieved by some steps that include the knowledge acquisition, expression, and implementation. Such extracted knowledge can be drawn by rules. Clustering (CU, input space partition (ISP), neuro-fuzzy (NF), neural network (NN), extension matrix (EM), etc. are employed for expression the knowledge by rules. In this paper, the various approaches of the knowledge extraction are examined by categories that separate the methods by the applied industrial fields. Also, the several test data and the experimental results are compared and analysed based upon the applied techniques that include CL, ISP, NF, NN, EM, and so on.

  • PDF

Stereo Calibration Using Support Vector Machine

  • Kim, Se-Hoon;Kim, Sung-Jin;Won, Sang-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.250-255
    • /
    • 2003
  • The position of a 3-dimensional(3D) point can be measured by using calibrated stereo camera. To obtain more accurate measurement ,more accurate camera calibration is required. There are many existing methods to calibrate camera. The simple linear methods are usually not accurate due to nonlinear lens distortion. The nonlinear methods are accurate more than linear method, but it increase computational cost and good initial guess is needed. The multi step methods need to know some camera parameters of used camera. Recent years, these explicit model based camera calibration work with the development of more precise camera models involving correction of lens distortion. But these explicit model based camera calibration have disadvantages. So implicit camera calibration methods have been derived. One of the popular implicit camera calibration method is to use neural network. In this paper, we propose implicit stereo camera calibration method for 3D reconstruction using support vector machine. SVM can learn the relationship between 3D coordinate and image coordinate, and it shows the robust property with the presence of noise and lens distortion, results of simulation are shown in section 4.

  • PDF