• 제목/요약/키워드: Neural network analysis

검색결과 2,575건 처리시간 0.028초

신경회로망을 이용한 수량화 문제의 최적화 응용기법 연구 (A Study on Optimization Approach for the Quantification Analysis Problem Using Neural Networks)

  • 이동명
    • 한국정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.206-211
    • /
    • 2006
  • 수량화 문제는 n개의 성질을 갖는 m개의 개체들을 각 개체들의 유사도(similarity)를 가장 잘 반영하도록 p차원의 공간 상에 대응시키는 문제이다. 본 논문에서는 물리학에서의 열평형 상태(thermal equilibrium state)에서 분자시스템의 해석적 근사 움직임에 대한 이론인 평균장 이론(mean field theory)에 의한 분자의 평균 변화량 계산과 어닐링(annealing) 방법에 의한 평균장 신경회로망(mean field neural network)을 수량화 문제(quantification analysis problem)의 해결에 적용하였다. 그 결과, 제안한 최적화 응용기법 이 기존의 고유치 분석방법(eigen value analysis)에 비해 비용측면에서 좀 더 최적에 가까운 해답을 찾아낼 수 있음을 확인하였다.

신경회로망을 이용한 RF 스퍼터링 ZnO 박막 증착 프로세스 모델링 (Modeling of RF Sputtering Process for ZnO Thin film Deposition using Neural Network)

  • 임근영;이상극;박춘배
    • 한국전기전자재료학회논문지
    • /
    • 제19권7호
    • /
    • pp.624-630
    • /
    • 2006
  • ZnO deposition parameters are not independent and have a nonlinear and complex property. To propose a method that could verify and predict the relations of process variables, neural network was used. At first, ZnO thin films were deposited by using RF magnetron sputtering process with various conditions. Si, GaAs, and Glass were used as substrates. The temperature, work pressure, and RF power of the substrate were $50\sim500^{\circ}C$, 15 mTorr, and $180\sim210W$, respectively : the purity of the target was ZnO 4 N. Structural properties of ZnO thin films were estimated by using XRD (0002) peak intensity. The structure of neural network was a form of 4-7-1 that have one hidden layer. In training a network, learning rate and momentum were selected as 0.2, 0.6 respectively. A backpropagation neural network were performed with XRD (0002) peak data. After training a network, the temperature of substrate was evaluated as the most important parameter by sensitivity analysis and response surface. As a result, neural network could capture nonlinear and complex relationships between process parameters and predict structural properties of ZnO thin films with a limited set of experiments.

신경회로망에 의한 용접 결함 종류의 정량적인 자동인식 시스템 개발에 관한 연구 (A Study on Development of Automatically Recognizable System in Types of Welding Flaws by Neural Network)

  • 김재열
    • 한국생산제조학회지
    • /
    • 제6권1호
    • /
    • pp.27-33
    • /
    • 1997
  • A neural network approach has been developed to determine the depth of a surface breaking crack in a steel plate from ultrasonic backscattering data. The network is trained by the use of feedforward three-layered network together with a back-scattering algorithm for error correction. The signal used for crack insonification is a mode converted 70$^{\circ}$transverse wave. A numerical analysis of back scattered field is carried out based on elastic wave theory, by the use of the boundary element method. The numerical data are calibrated by comparison with experimental data. The numerical analysis provides synthetic data for the training of the network. The training data have been calculated for cracks with specified increments of the crack depth. The performance of the network has been tested on other synthetic data and experimental data which are different from the training data.

  • PDF

오류 역전파 신경망 기반의 연기 검출 성능 분석 (A Performance Analysis of Video Smoke Detection based on Back-Propagation Neural Network)

  • 임재유;김원호
    • 한국위성정보통신학회논문지
    • /
    • 제9권4호
    • /
    • pp.26-31
    • /
    • 2014
  • 본 논문은 컬러 영상에서 색상과 움직임 정보를 이용하여 후보영역을 특정하고 연기의 특성들을 추출하여 신경망을 사용한 검출의 성능을 분석하여 제시한다. 기존 연기 검출 알고리즘에서는 연기의 움직임, 색상을 분석하여 후보영역으로 특정하고 그 영역 안에서 연기의 여러 특성을 분석 하는 방법을 이용한다. 하지만 대부분 처음 발생하는 연기의 색상조건을 고려하지 않았기 때문에 조기 검출에는 적절하지 못하다. 본 논문은 연기의 색상과 움직임의 특성을 분석하여 그에 알맞은 방법을 적용하여 후보영역을 폭넓게 결정하고 그 영역 내에서 연기의 확산과 투명성을 인공신경망에 적용시킴으로써 나오는 성능을 분석하였다. 모의실험 결과는 91.31%의 검출율과, 2.62%의 오검출율 성능을 확인할 수 있었다.

차량 시뮬레이터 접목을 위한 실시간 인체거동 해석기법 (Real-Time Analysis of Occupant Motion for Vehicle Simulator)

  • 오광석;손권;최경현
    • 대한기계학회논문집A
    • /
    • 제26권5호
    • /
    • pp.969-975
    • /
    • 2002
  • Visual effects are important cues for providing occupants with virtual reality in a vehicle simulator which imitates real driving. The viewpoint of an occupant is sensitively dependent upon the occupant's posture, therefore, the total human body motion must be considered in a graphic simulator. A real-time simulation is required for the dynamic analysis of complex human body motion. This study attempts to apply a neural network to the motion analysis in various driving situations. A full car of medium-sized vehicles was selected and modeled, and then analyzed using ADAMS in such driving conditions as bump-pass and lane-change for acquiring the accelerations of chassis of the vehicle model. A hybrid III 50%ile adult male dummy model was selected and modeled in an ellipsoid model. Multibody system analysis software, MADYMO, was used in the motion analysis of an occupant model in the seated position under the acceleration field of the vehicle model. Acceleration data of the head were collected as inputs to the viewpoint movement. Based on these data, a back-propagation neural network was composed to perform the real-time analysis of occupant motions under specified driving conditions and validated output of the composed neural network with MADYMO result in arbitrary driving scenario.

Prediction of Error due to Eccentricity of Hole in Hole-Drilling Method Using Neural Network

  • Kim, Cheol;Yang, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1359-1366
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, we obtained the magnitude of the error due to eccentricity of a hole through the finite element analysis. To predict the magnitude of the error due to eccentricity of a hole in the biaxial residual stress field, it could be learned through the back propagation neural network. The prediction results of the error using the trained neural network showed good agreement with FE analyzed results.

인공신경망기법을 이용한 굴착에 따른 지표침하평가 (Prediction of Deep Excavation-induced Ground surface movements using Artifical Neural Network)

  • 유충식;최병석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.69-76
    • /
    • 2003
  • This paper presents the prediction of deep excavation-induced ground surface movements using artifical neural network(ANN) technique, which is of prime importance in the perspective of damage assessment of adjacent buildings. A finite element model, which can realistically replicate deep excavation-induced ground movements was employed to perform a parametric study on deep excavations with emphasis on ground movements. The result of the finite element analysis formed a basis for the Arificial Neural Network(ANN) system development. It was shown that the developed ANN system can be effecting used for a first-order prediction of ground movements associated with deep-excavation.

  • PDF

AE 신호 및 신경회로망을 이용한 공작기계 주축용 베어링 결함검출 (Detection of Main Spindle Bearing Defects in Machine Tool by Acoustic Emission Signal via Neural Network Methodology)

  • 정의식
    • 한국생산제조학회지
    • /
    • 제6권4호
    • /
    • pp.46-53
    • /
    • 1997
  • This paper presents a method of detection localized defects on tapered roller bearing in main spindle of machine tool system. The feature vectors, i.e. statistical parameters, in time-domain analysis technique have been calculated to extract useful features from acoustic emission signals. These feature vectors are used as the input feature of an neural network to classify and detect bearing defects. As a results, the detection of bearing defect conditions could be sucessfully performed by using an neural network with statistical parameters of acoustic emission signals.

  • PDF

Application of wavelet multiresolution analysis and artificial intelligence for generation of artificial earthquake accelerograms

  • Amiri, G. Ghodrati;Bagheri, A.
    • Structural Engineering and Mechanics
    • /
    • 제28권2호
    • /
    • pp.153-166
    • /
    • 2008
  • This paper suggests the use of wavelet multiresolution analysis (WMRA) and neural network for generation of artificial earthquake accelerograms from target spectrum. This procedure uses the learning capabilities of radial basis function (RBF) neural network to expand the knowledge of the inverse mapping from response spectrum to earthquake accelerogram. In the first step, WMRA is used to decompose earthquake accelerograms to several levels that each level covers a special range of frequencies, and then for every level a RBF neural network is trained to learn to relate the response spectrum to wavelet coefficients. Finally the generated accelerogram using inverse discrete wavelet transform is obtained. An example is presented to demonstrate the effectiveness of the method.

SPMSM 드라이브의 속도제어를 위한 HAI 제어 (HAI Control for Speed Control of SPMSM Drive)

  • 이홍균;이정철;정동화
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.8-14
    • /
    • 2005
  • This paper is proposed hybrid artificial intelligent(HAI) controller for speed control of surface permanent magnet synchronous motor(SPMSM) drive. The design of this algorithm based on HAI controller that is implemented using fuzzy control and neural network. This controller uses fuzzy rule as training patterns of a neural network. Also, this controller uses the back-propagation method to adjust the weights between the neurons of neural network in order to minimize the error between the command output and actual output. A model reference adaptive scheme is proposed in which the adaptation mechanism is executed by fuzzy logic based on the error and change of error measured between the motor speed and output of a reference model. The control performance of the HAI controller is evaluated by analysis for various operating conditions. The results of analysis prove that the proposed control system has strong high performance and robustness to parameter variation, and steady-state accuracy and transient response.