• 제목/요약/키워드: Neural data

검색결과 5,201건 처리시간 0.037초

LSTM 모델 기반 주행 모드 인식을 통한 자율 주행에 관한 연구 (Automated Vehicle Research by Recognizing Maneuvering Modes using LSTM Model)

  • 김은희;오혜연
    • 한국ITS학회 논문지
    • /
    • 제16권4호
    • /
    • pp.153-163
    • /
    • 2017
  • 본 연구에서는 운전자 별로 생활 중에 이동하는 주행 도로의 특징 및 교통상황이 서로 다르며 운전습관이 상이함을 고려하여, 운전자 혹은 운전자 그룹별 기계학습모형을 구성하고, 학습된 모델을 분석하여 운전자의 주행모드 별 특징을 탐색하여 자율 주행 자동차를 시뮬레이션 하였다. 운전지식을 활용하여 주행조작 전후 센서의 동작 상황에 따라 8종류의 종방향 모드와 4종류 회전모드로 구분하고, 종방향 모드와 회전모드를 결합한 21개의 결합형 주행모드로 세분화 하였다. 주행모드가 레이블 된 시계열 데이터에 대해 딥러닝 지도학습 모델인 RNN (Recurrent Neural Network), LSTM (Long Short-Term Memory), Bi-LSTM 모델을 활용하여서 운전자 별 혹은 운전자 그룹별 주행데이터를 학습하고, 학습된 모델을 테스트 데이터 셋에서 주행 모드인식률을 검증하였다. 실험 데이터는 미국 VTTI 기관에서 수집된 22명의 운전자의 1,500개의 실생활 주행 데이터가 사용되었다. 주행 모드 인식에 있어, 데이터 셋에 대해 Bi-LSTM 모델이 RNN, LSTM 모델에 비해 향상된 성능을 보였으며, 최대 93.41%의 주행모드 인식률을 확인하였다.

LIBS를 이용한 흑색 플라스틱의 자동선별 시스템 개발 (Development of Automatic Sorting System for Black Plastics Using Laser Induced Breakdown Spectroscopy (LIBS))

  • 박은규;정밤빛;최우진;오성권
    • 자원리싸이클링
    • /
    • 제26권6호
    • /
    • pp.73-83
    • /
    • 2017
  • 소형가전 제품은 종류가 다양할 뿐만 아니라 구성부품의 재질도 복잡하여 폐기시 재활용이 매우 어려운 실정이다. 특히, 폐소형가전의 경우 흑색 플라스틱의 함유량이 높을 뿐만 아니라 재질이 다양하여 재활용 공정에서 발생하는 플라스틱의 재질을 인식하여 효율적으로 선별 회수하는 것이 매우 어렵다. 본 연구에서는 기존 선별기술이 가지고 있는 흑색 플라스틱의 재질별 선별에 대한 기술적 한계 및 단점을 보완하기 위하여 레이저유도붕괴분광법(Laser-Induced Breakdown Spectroscopy, LIBS)을 기반으로 하는 흑색 플라스틱의 재질별 자동선별 시스템을 개발하였다. 본 시스템은 정량 공급장치, 위치 자동인식 장치, 레이저유도기반분광분석(LIBS) 장치, 선별분리장치 및 Control unit 등으로 구성되어 있다. 레이저유도붕괴분광법(LIBS)을 이용하여 흑색 플라스틱의 재질별 특성 스펙트럼 데이터를 획득하고, 인공지능형 알고리즘을 적용한 분류기를 설계하여 적용함으로써 흑색 플라스틱의 재질을 효율적으로 인식하고 분류할 수 있다. 본 연구에서 개발한 방사형기저함수신경회로망(RBFNNs) 분류기의 분류율은 약 97% 이상으로 나타났으며, 자동선별 시스템의 흑색 플라스틱의 재질별 인식률은 약 94.0% 이상, 선별효율은 80.0% 이상으로 조사되었다. 본 연구에서는 실험실 규모의 자동선별장치를 개발하였으며, 본 장치에 대한 실험결과를 바탕으로 흑색 플라스틱 재질인식 및 선별효율 등을 분석하므로써 향후 폐소형가전의 재활용 현장에 적용할 예정이다.

척수소뇌성 운동실조증 제7형 (Spinocerebellar ataxia 7 (SCA7))

  • 정선용;장석훈;김현주
    • Journal of Genetic Medicine
    • /
    • 제4권1호
    • /
    • pp.22-37
    • /
    • 2007
  • The autosomal dominant spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases, clinically and genetically heterogeneous, characterized by degeneration of spinocerebellar pathways with variable involvement of other neural systems. At present, 27 distinct genetic forms of SCAs are known: SCA1-8, SCA10-21, SCA23, SCA25-28, DRPLA (dentatorubral-pallidoluysian atrophy), and 16q-liked ADCA (autosomal dominant cerebellar ataxia). Epidemiological data about the prevalence of SCAs are restricted to a few studies of isolated geographical regions, and most do not reflect the real occurrence of the disease. In general a prevalence of about 0.3-2 cases per 100,000 people is assumed. As SCA are highly heterogeneous, the prevalence of specific subtypes varies between different ethnic and continental populations. Most recent data suggest that SCA3 is the commonest subtype worldwide; SCA1, SCA2, SCA6, SCA7, and SCA8 have a prevalence of over 2%, and the remaining SCAs are thought to be rare (prevalence <1%). In this review, we highlight and discuss the SCA7. The hallmark of SCA7 is the association of hereditary ataxia and visual loss caused by pigmentary macular degeneration. Visual failure is progressive, bilateral and symmetrical, and leads irreversibly to blindness. This association represents a distinct disease entity classified as autosomal dominant cerebellar ataxia (ADCA) type II by Harding. The disease affectsprimarily the cerebellum and the retina by the moderate to severe neuronal loss and gliosis, but also many other central nervous system structures as the disease progresses. SCA7 is caused by expansion of an unstable trinucleotide CAG repeat in the ATXN7 gene encoding a polyglutamine (polyQ) tract in the corresponding protein, ataxin-7. Normal ATXN7 alleles contain 4-35 CAG repeats, whereas pathological alleles contain from 36->450 CAG repeats. Immunoblott analysis demonstrated that ataxin-7 is widely expressed but that expression levels vary among tissues. Instability of expanded repeats is more pronounced in SCA7 than in other SCA subtypes and can cause substantial lowering of age at onset in successive generations termed ‘anticipation’ so that children may become diseased even before their parents develop symptoms. The strong anticipation in SCA7 and the rarity of contractions should have led to its extinction within a few generations. There is no specific drug therapy for this neurodegenerative disorder. Currently, therapy remains purely symptomatic. Cellular models and SCA7 transgenic mice have been generated which constitute valuable resources for studying the disease mechanism. Understanding the pathogenetic mechanisms of neurodegeneration in SCAs should lead to the identification of potential therapeutic targets and ultimately facilitate drug discovery. Here we summarize the clinical, pathological, and genetic aspects of SCA7, and review the current understanding of the pathogenesis of this disorder. Further, we also review the potential therapeutic strategies that are currently being explored in polyglutamine diseases.

  • PDF

주행 안전을 위한 joint deep learning 기반의 도로 노면 파손 및 장애물 탐지 알고리즘 (Detection Algorithm of Road Damage and Obstacle Based on Joint Deep Learning for Driving Safety)

  • 심승보;정재진
    • 한국ITS학회 논문지
    • /
    • 제20권2호
    • /
    • pp.95-111
    • /
    • 2021
  • 인구의 감소 및 고령화 사회가 진행되면서 운전자의 평균 연령은 높아지게 된다. 그에 따라 잠재적인 사고의 위험성이 높은 고령 운전자들은 자율 주행형 개인 이동체가 필요하게 된다. 이러한 이동체가 도로 주행 중에 안전성을 확보하기 위하여 여러 장애물에 대응할 기술이 요구된다. 그 중에서도 주행 중에 마주할 수 있는 차량, 자전거, 사람과 같은 동적 장애물뿐만 아니라 도로 노면의 불량 상태와 같은 정적 장애물을 인식하는 기술이 가장 우선적으로 필요하다. 이를 위해서 본 논문에서는 두 종류의 장애물을 동시에 탐지할 수 있는 심층 신경망 알고리즘을 제안했다. 이 알고리즘을 개발하기 위해서 1,418장의 영상을 이용하여 7종의 동적 장애물에 표기한 annotation data와 도로 노면 파손을 표시한 label 영상을 확보했다. 이를 이용하여 학습한 결과, 46.22%의 평균 정확도로 동적 장애물을 탐지하고 74.71%의 mean intersection over union으로 도로 노면 파손을 탐지했다. 또한 한 장의 영상을 처리하는데 평균 소요시간은 89ms로 일반 차량보다 느린 개인 이동 차량에 사용하기 적합한 알고리즘을 개발했다. 향후 주행 중 마주할 있는 도로 장애물을 탐지하는 기술을 활용하여 개인 이동 차량의 주행 안전성이 향상되길 기대한다.

딥러닝 기반 LSTM 모형을 이용한 감조하천 수위 예측 (Prediction of water level in a tidal river using a deep-learning based LSTM model)

  • 정성호;조효섭;김정엽;이기하
    • 한국수자원학회논문집
    • /
    • 제51권12호
    • /
    • pp.1207-1216
    • /
    • 2018
  • 본 연구는 물리적 수리 수문모형의 적용이 제한적인 감조하천에서의 수위예측을 목적으로 하고 있으며, 이를 위해 한강 잠수교를 대상으로 딥러닝 오픈소스 소프트웨어 라이브러리인 TensorFlow를 활용하여 LSTM 모형을 구성하고 2011년부터 2017년까지의 10분 단위의 잠수교 수위, 팔당댐 방류량과 한강하구 강화대교지점의 예측조위 자료를 이용하여 모형학습(2011~2016) 및 수위예측(2017)을 수행하였다. 모형 매개변수는 민감도 분석을 통해 은닉층의 개수는 6개, 학습속도는 0.01, 학습횟수는 3000번로 결정하였으며, 모형 학습 시 학습정보의 시간적 양을 결정하는 중요한 매개변수인 시퀀스길이는 1시간, 3시간, 6시간으로 변화시키며 모의하였다. 최종적으로 선행시간에 따른 모의 예측능력을 평가하기 위해 LSTM 모형의 예측 선행시간을 6개(1 ~ 24시간)로 구분하여 실측수위와 예측수위와의 비교 분석을 수행한 결과, LSTM 모형의 최적의 성능을 내는 결과는 시퀀스길이를 1시간으로 하였을 때로 분석되었으며, 특히 선행시간 1시간에 대한 예측정확도는 RMSE는 0.065 m, NSE는 0.99로 실측수위에 매우 근접한 예측 결과를 나타내었다. 또한 시퀀스길이에 상관없이 선행시간이 길어질수록 모형의 예측 정확도는 2017년 전기간에 걸쳐 평균적으로 RMSE 0.08 m에서 0.28 m로 오차가 증가하였으며, NSE는 0.99에서 0.74로 감소하였다.

비프로파일링 기반 전력 분석의 성능 향상을 위한 오토인코더 기반 잡음 제거 기술 (Improving Non-Profiled Side-Channel Analysis Using Auto-Encoder Based Noise Reduction Preprocessing)

  • 권동근;진성현;김희석;홍석희
    • 정보보호학회논문지
    • /
    • 제29권3호
    • /
    • pp.491-501
    • /
    • 2019
  • 최근 보안 디바이스의 물리적 취약성을 찾을 수 있는 부채널 분석 분야에서 딥러닝을 활용한 연구가 활발히 진행되고 있다. 하지만, 최신 딥러닝 기반 부채널 분석 기술 연구는 템플릿 공격 등과 같은 프로파일링 기반 부채널 분석 환경에서 파형을 옳게 분류하기 위한 연구에 집중되어 있다. 본 논문에서는 이전 연구들과 다르게 딥러닝을 신호 전처리 기법으로 활용하여 차분 전력 분석, 상관 전력 분석 등과 같은 논프로파일링 기반 부채널 분석의 성능을 고도화할 수 있는 방법을 제안한다. 제안기법은 오토인코더를 부채널 분석 환경에 적합하게 변경하여 부채널 정보의 노이즈를 제거하는 전처리 기법으로, 기존 노이즈 제거 오토인코더는 임의로 추가한 노이즈에 대한 학습을 하였다면 제안하는 기법은 노이즈가 제거된 라벨을 사용하여 실제 데이터의 노이즈를 학습한다. 제안기법은 논프로파일링 환경에서 수행 가능한 전처리 기법이며 하나의 뉴런 네트워크의 학습만을 통해 수행할 수 있다. 본 논문에서는 실험을 통해 제안기법의 노이즈 제거 성능을 입증하였으며, 주성분분석 및 선형판별분석과 같은 기존 전처리 기법들과 비교하여 우수하다는 것을 보인다.

용어 사전의 특성이 문서 분류 정확도에 미치는 영향 연구 (Analyzing the Effect of Characteristics of Dictionary on the Accuracy of Document Classifiers)

  • 정해강;김남규
    • 경영과정보연구
    • /
    • 제37권4호
    • /
    • pp.41-62
    • /
    • 2018
  • 다양한 소셜 미디어 활동과 인터넷 뉴스 기사, 블로그 등을 통해 유통되는 비정형 데이터의 양이 급증함에 따라 비정형 데이터를 분석하고 활용하기 위한 연구가 활발히 진행되고 있다. 텍스트 분석은 주로 특정 도메인 또는 특정 주제에 대해 수행되므로, 도메인별 용어 사전의 구축과 적용에 대한 중요성이 더욱 강조되고 있다. 용어 사전의 품질은 비정형 데이터 분석 결과의 품질에 직접적인 영향을 미치게 되며, 분석 과정에서 정제의 역할을 수행함으로써 분석의 관점을 정의한다는 측면에서 그 중요성이 더욱 강조된다. 이렇듯 용어 사전의 중요성은 기존의 많은 연구에서도 강조되어 왔으나, 용어 사전이 분석 결과의 품질에 어떤 방식으로 어떤 영향을 미치는지에 대한 엄밀한 분석은 충분히 이루어지지 않았다. 따라서 본 연구에서는 전체 문서에서의 용어 빈도수에 기반을 두어 사전을 구축하는 일괄 구축 방식, 카테고리별 주요 용어를 추출하여 통합하는 용어 통합 방식, 그리고 카테고리별 주요 특질(Feature)을 추출하여 통합하는 특질 통합 방식의 세 가지 방식으로 사전을 구축하고 각 사전의 품질을 비교한다. 품질을 간접적으로 평가하기 위해 각 사전을 적용한 문서 분류의 정확도를 비교하고, 각 사전에 고유율의 개념을 도입하여 정확도의 차이가 나타나는 원인을 심층 분석한다. 본 연구의 실험에서는 5개 카테고리의 뉴스 기사 총 39,800건을 분석하였다. 실험 결과를 심층 분석한 결과 문서 분류의 정확도가 높게 나타나는 사전의 고유율이 높게 나타남을 확인하였으며, 이를 통해 사전의 고유율을 높임으로써 분류의 정확도를 더욱 향상시킬 수 있는 가능성을 발견하였다.

일부 보건계열학과 대학생의 4차 산업혁명 인식 및 준비도 연구 (A Study on the Awareness and Preparation of the Forth Industrial Revolution of Some Health Department College Students)

  • 조혜은
    • 한국융합학회논문지
    • /
    • 제11권12호
    • /
    • pp.291-299
    • /
    • 2020
  • 본 연구의 목적은 의료기사를 준비하는 보건계열 대학생 280명을 대상으로 4차 산업혁명에 대한 인식도와 준비도를 조사하여 보건계열 미래형 교육과정 개발의 기초자료로 활용되고자 수행되었다. 자료 수집은 자기기입식 구조화된 설문지를 이용하였고, 4차 산업에 대한 전반적 인식도는 2.74로, 관련 용어 인식은 3D프린팅(3.59)이 높았고 신경망기계학습(2.33) 인식이 가장 낮았다. 전공별로 물리치료학(3.00) 전공 학생의 인식이 높았고 치기공학(2.37) 전공 학생의 인식이 가장 낮았으며 사물인터넷에 대한 전공별 인식도에 차이가 있었다(p=0.024). 4차 산업혁명 관련 준비를 '한다' 54.5%이었고 준비가 어려운 이유로는 '흥미부족'(42.9%)이 높았으며, 교육경험은 50.6%, VR&AR 게임경험은 60.9%에서 '있다'고 응답하였다. 4차 산업혁명 시대에 나타날 변화로 '일자리 감소'(38.7%), 요구되는 역량은 '창의역량'(50.6%)이었다. 따라서 4차 산업혁명 시대를 맞이하는 보건계열 대학생들의 인식도와 준비도를 높일 수 있는 4차 산업혁명 관련 교육과정 개발 및 교수법 적용 등의 변화가 필요하겠다.

CNN을 활용한 새싹삼의 품질 예측 모델 개발 (A Quality Prediction Model for Ginseng Sprouts based on CNN)

  • 이충구;정석봉
    • 한국시뮬레이션학회논문지
    • /
    • 제30권2호
    • /
    • pp.41-48
    • /
    • 2021
  • 농촌 인구의 감소와 고령화가 지속되면서 농업 생상성 향상의 중요성이 높아지고 있는 가운데, 농작물 품질에 대한 조기 예측은 농업 생산성 및 수익성 향상에 중요한 역할을 할 수 있다. 최근 CNN 기반의 딥러닝 기술 및 전이 학습을 활용하여 농작물의 질병을 분류하거나 수확량을 예측하는 연구가 활발하게 진행되고 있지만, 수확 후 농작물의 품질을 식재단계에서 조기에 예측하는 연구는 찾아보기 힘들다. 본 연구에서는 건강 기능성 식품으로 주목받고 있는 새싹삼을 대상으로, 수확 후 새싹삼의 품질을 식재단계에서 조기에 예측하는 모델을 제안한다. 이를 위하여 묘삼의 이미지를 촬영한 후 수경재배를 통해 새싹삼을 재배하였고, 수확 후 새싹삼의 품질을 분류하여 실험 데이터를 수집하였다. 다수의 CNN 기반의 사전 학습된 모델을 활용하여 새싹삼 조기 품질 예측 모델을 구축하고, 수집된 데이터를 이용하여 각 모델의 학습 및 예측 성능을 비교 분석하였다. 분석 결과 모든 예측 모델에서 80% 이상의 예측 정확도를 보였으며, 특히 ResNet152V2 기반의 예측 모델에서 가장 높은 정확도를 보였다. 본 연구를 통해 인력에 의존하던 기존의 묘삼 선별 작업을 자동화하여 새싹삼의 품질을 높이고 생산량을 증대시켜 농가의 수익창출에 기여할 수 있을 것으로 기대된다.

관계형 강화 학습을 위한 도메인 지식의 효과적인 활용 (Effective Utilization of Domain Knowledge for Relational Reinforcement Learning)

  • 강민교;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.141-148
    • /
    • 2022
  • 최근 들어 강화 학습은 심층 신경망 기술과 결합되어 바둑, 체스와 같은 보드 게임, Atari, StartCraft와 같은 컴퓨터 게임, 로봇 물체 조작 작업 등과 같은 다양한 분야에서 매우 놀라운 성공을 거두었다. 하지만 이러한 심층 강화 학습은 행동, 상태, 정책 등을 모두 벡터 형태로 표현한다. 따라서 기존의 심층 강화 학습은 학습된 정책의 해석 가능성과 일반성에 제한이 있고, 도메인 지식을 학습에 효과적으로 활용하기도 어렵다는 한계성이 있다. 이러한 한계점들을 해결하기 위해 제안된 새로운 관계형 강화 학습 프레임워크인 dNL-RRL은 센서 입력 데이터와 행동 실행 제어는 기존의 심층 강화 학습과 마찬가지로 벡터 표현을 이용하지만, 행동, 상태, 그리고 학습된 정책은 모두 논리 서술자와 규칙들로 나타내는 관계형 표현을 이용한다. 본 논문에서는 dNL-RRL 관계형 강화 학습 프레임워크를 이용하여 제조 환경 내에서 운송용 모바일 로봇을 위한 행동 정책 학습을 수행하는 효과적인 방법을 제시한다. 특히 본 연구에서는 관계형 강화 학습의 효율성을 높이기 위해, 인간 전문가의 사전 도메인 지식을 활용하는 방안들을 제안한다. 여러 가지 실험들을 통해, 본 논문에서 제안하는 도메인 지식을 활용한 관계형 강화 학습 프레임워크의 성능 개선 효과를 입증한다.