• Title/Summary/Keyword: Neural data

Search Result 5,198, Processing Time 0.037 seconds

Modeling of Hydrologic Time Series using Stochastic Neural Networks Approach (추계학적 신경망 접근법을 이용한 수문학적 시계열의 모형화)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1346-1349
    • /
    • 2010
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of generalized regression neural networks model (GRNNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training and test performances, respectively. The training and test performances consist of the historic, the generated, and the mixed data, respectively. From this research, we evaluate the impact of GRNNM and MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

PREDICTION OF RESIDUAL STRESS FOR DISSIMILAR METALS WELDING AT NUCLEAR POWER PLANTS USING FUZZY NEURAL NETWORK MODELS

  • Na, Man-Gyun;Kim, Jin-Weon;Lim, Dong-Hyuk
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.337-348
    • /
    • 2007
  • A fuzzy neural network model is presented to predict residual stress for dissimilar metal welding under various welding conditions. The fuzzy neural network model, which consists of a fuzzy inference system and a neuronal training system, is optimized by a hybrid learning method that combines a genetic algorithm to optimize the membership function parameters and a least squares method to solve the consequent parameters. The data of finite element analysis are divided into four data groups, which are split according to two end-section constraints and two prediction paths. Four fuzzy neural network models were therefore applied to the numerical data obtained from the finite element analysis for the two end-section constraints and the two prediction paths. The fuzzy neural network models were trained with the aid of a data set prepared for training (training data), optimized by means of an optimization data set and verified by means of a test data set that was different (independent) from the training data and the optimization data. The accuracy of fuzzy neural network models is known to be sufficiently accurate for use in an integrity evaluation by predicting the residual stress of dissimilar metal welding zones.

Quality Control of Two Dimensions Using Digital Image Processing and Neural Networks (디지털 영상처리와 신경망을 이용한 2차원 평면 물체 품질 제어)

  • Kim, Jin-Hwan;Seo, Bo-Hyeok;Park, Seong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2580-2582
    • /
    • 2004
  • In this paper, a Neural Network(NN) based approach for classification of two dimensions images. The proposed algorithm is able to apply in the actual industry. The described diagnostic algorithm is presented to defect surface failures on tiles. A way to get data for a digital image process is several kinds of it. The tiles are scanned and the digital images are preprocessed and classified using neural networks. It is important to reduce the amount of input data with problem specific preprocessing. The auto-associative neural network is used for feature generation and selection while the probabilistic neural network is used for classification. The proposed algorithm is evaluated experimentally using one hundred of the real tile images. Sample image data to preprocess have histogram. The histogram is used as input value of probabilistic neural network. Auto-associative neural network compress input data and compressed data is classified using probabilistic neural network. Classified sample images are determined by human state. So it is intervened human subjectivity. But digital image processing and neural network are better than human classification ability. Therefore it is very useful of quality control improvement.

  • PDF

A Prediction of the Plane Failure Stability Using Artificial Neural Networks (인공신경망을 이용한 평면파괴 안정성 예측)

  • Kim, Bang-Sik;Lee, Sung-Gi;Seo, Jae-Young;Kim, Kwang-Myung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.513-520
    • /
    • 2002
  • The stability analysis of rock slope can be predicted using a suitable field data but it cannot be predicted unless suitable field data was taken. In this study, artificial neural networks theory is applied to predict plane failure that has a few data. It is well known that human brain has the advantage of handling disperse and parallel distributed data efficiently. On the basis of this fact, artificial neural networks theory was developed and has been applied to various fields of science successfully In this study, error back-propagation algorithm that is one of the teaching techniques of artificial neural networks is applied to predict plane failure. In order to verify the applicability of this model, a total of 30 field data results are used. These data are used for training the artificial neural network model and compared between the predicted and the measured. The simulation results show the potentiality of utilizing the neural networks for effective safety factor prediction of plane failure. In conclusion, the well-trained artificial neural network model could be applied to predict the plane failure stability of rock slope.

  • PDF

Performance Comparison of Guitar Chords Classification Systems Based on Artificial Neural Network (인공신경망 기반의 기타 코드 분류 시스템 성능 비교)

  • Park, Sun Bae;Yoo, Do-Sik
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.3
    • /
    • pp.391-399
    • /
    • 2018
  • In this paper, we construct and compare various guitar chord classification systems using perceptron neural network and convolutional neural network without pre-processing other than Fourier transform to identify the optimal chord classification system. Conventional guitar chord classification schemes use, for better feature extraction, computationally demanding pre-processing techniques such as stochastic analysis employing a hidden markov model or an acoustic data filtering and hence are burdensome for real-time chord classifications. For this reason, we construct various perceptron neural networks and convolutional neural networks that use only Fourier tranform for data pre-processing and compare them with dataset obtained by playing an electric guitar. According to our comparison, convolutional neural networks provide optimal performance considering both chord classification acurracy and fast processing time. In particular, convolutional neural networks exhibit robust performance even when only small fraction of low frequency components of the data are used.

A Channel Equalization Algorithm Using Neural Network Based Data Least Squares (뉴럴네트웍에 기반한 Data Least Squares를 사용한 채널 등화기 알고리즘)

  • Lim, Jun-Seok;Pyeon, Yong-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.63-68
    • /
    • 2007
  • Using the neural network model for oriented principal component analysis (OPCA), we propose a solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. In this paper, we applied this neural network model to channel equalization. Simulations show that the neural network based DLS outperforms ordinary least squares in channel equalization problems.

Realization of a neural network controller by using iterative learning control (반복학습 제어를 사용한 신경회로망 제어기의 구현)

  • 최종호;장태정;백석찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.230-235
    • /
    • 1992
  • We propose a method of generating data to train a neural network controller. The data can be prepared directly by an iterative learning technique which repeatedly adjusts the control input to improve the tracking quality of the desired trajectory. Instead of storing control input data in memory as in iterative learning control, the neural network stores the mapping between the control input and the desired output. We apply this concept to the trajectory control of a two link robot manipulator with a feedforward neural network controller and a feedback linear controller. Simulation results show good generalization of the neural network controller.

  • PDF

Multi-temporal Remote-Sensing Imag e ClassificationUsing Artificial Neural Networks (인공신경망 이론을 이용한 위성영상의 카테고리분류)

  • Kang, Moon-Seong;Park, Seung-Woo;Lim, Jae-Chon
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.59-64
    • /
    • 2001
  • The objectives of the thesis are to propose a pattern classification method for remote sensing data using artificial neural network. First, we apply the error back propagation algorithm to classify the remote sensing data. In this case, the classification performance depends on a training data set. Using the training data set and the error back propagation algorithm, a layered neural network is trained such that the training pattern are classified with a specified accuracy. After training the neural network, some pixels are deleted from the original training data set if they are incorrectly classified and a new training data set is built up. Once training is complete, a testing data set is classified by using the trained neural network. The classification results of Landsat TM data show that this approach produces excellent results which are more realistic and noiseless compared with a conventional Bayesian method.

  • PDF

Pan Evaporation Analysis using Nonlinear Disaggregation Model (비선형 분리모형에 의한 증발접시 증발량의 해석)

  • Kim, Seong-Won;Kim, Jeong-Heon;Park, Gi-Beom
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1147-1150
    • /
    • 2008
  • The goal of this research is to apply the neural networks models for the disaggregation of the pan evaporation (PE) data, Republic of Korea. The neural networks models consist of the support vector machines neural networks model (SVM-NNM) and multilayer perceptron neural networks model (MLP-NNM), respectively. The SVM-NNM in time series modeling is relatively new and it is more problematic in comparison with classifications. In this study, The disaggregation means that the yearly PE data divides into the monthly PE data. And, for the performances of the neural networks models, they are composed of training, cross validation, and testing data, respectively. From this research, we evaluate the impact of the SVM-NNM and the MLP-NNM for the disaggregation of the nonlinear time series data. We should, furthermore, construct the credible data of the monthly PE data from the disaggregation of the yearly PE data, and can suggest the methodology for the irrigation and drainage networks system.

  • PDF

Modeling of Nuclear Power Plant Steam Generator using Neural Networks (신경회로망을 이용한 원자력발전소 증기발생기의 모델링)

  • 이재기;최진영
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.551-560
    • /
    • 1998
  • This paper presents a neural network model representing complex hydro-thermo-dynamic characteristics of a steam generator in nuclear power plants. The key modeling processes include training data gathering process, analysis of system dynamics and determining of the neural network structure, training process, and the final process for validation of the trained model. In this paper, we suggest a training data gathering method from an unstable steam generator so that the data sufficiently represent the dynamic characteristics of the plant over a wide operating range. In addition, we define the inputs and outputs of neural network model by analyzing the system dimension, relative degree, and inputs/outputs of the plant. Several types of neural networks are applied to the modeling and training process. The trained networks are verified by using a class of test data, and their performances are discussed.

  • PDF