• Title/Summary/Keyword: Neural computing

Search Result 525, Processing Time 0.034 seconds

Efficient Thread Allocation Method of Convolutional Neural Network based on GPGPU (GPGPU 기반 Convolutional Neural Network의 효율적인 스레드 할당 기법)

  • Kim, Mincheol;Lee, Kwangyeob
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.10
    • /
    • pp.935-943
    • /
    • 2017
  • CNN (Convolution neural network), which is used for image classification and speech recognition among neural networks learning based on positive data, has been continuously developed to have a high performance structure to date. There are many difficulties to utilize in an embedded system with limited resources. Therefore, we use GPU (General-Purpose Computing on Graphics Processing Units), which is used for general-purpose operation of GPU to solve the problem because we use pre-learned weights but there are still limitations. Since CNN performs simple and iterative operations, the computation speed varies greatly depending on the thread allocation and utilization method in the Single Instruction Multiple Thread (SIMT) based GPGPU. To solve this problem, there is a thread that needs to be relaxed when performing Convolution and Pooling operations with threads. The remaining threads have increased the operation speed by using the method used in the following feature maps and kernel calculations.

Design of Multi-Dynamic Neuro-Fuzzy Controller for Dynamic Systems Control (동적시스템 제어를 위한 다단동적 뉴로-퍼지 제어기 설계)

  • Cho, Hyun-Seob;Min, Jin-Kyoung
    • Proceedings of the KAIS Fall Conference
    • /
    • 2007.05a
    • /
    • pp.150-153
    • /
    • 2007
  • The intent of this paper is to describe a neural network structure called multi dynamic neural network(MDNN), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the MDNN, are described. Computer simulations are demonstrate the effectiveness of the proposed learning using the MDNN.

  • PDF

A study for learning neural-network using internal representation (은닉층에 대한 의미부여를 통한 학습에 대한 연구)

  • 기세훈;안상철;권욱현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.842-846
    • /
    • 1993
  • Because of complexity, neural network is difficult to learn. So if internal representation[1] can be performed successfully, it is possible to use perceptron learning rule. As a result, learning is easier. Therefore the method of internal representations applied to the "XOR" problem, and the "spirals" problem. And then using the above results, the structure of neural network for computing is embodied.mputing is embodied.

  • PDF

Adaptive Control of Non-linearity Dynamic System using DNU (DNU에 의한 비선형 동적시스템의 적응제어)

  • Cho, Hyeon-Seob;Kim, Hee-Sook
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.533-536
    • /
    • 1998
  • The intent of this paper is to describe a neural network structure called dynamic neural processor(DNP), and examine how it can be used in developing a learning scheme for computing robot inverse kinematic transformations. The architecture and learning algorithm of the proposed dynamic neural network structure, the DNP, are described. Computer simulations are provided to demonstrate the effectiveness of the proposed learning using the DNP.

  • PDF

Intelligent Control of Nuclear Power Plant Steam Generator Using Neural Networks (신경회로망을 이용한 원자력발전소 증기발생기의 지능제어)

  • Kim, Sung-Soo;Lee, Jae-Gi;Choi, Jin-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.127-137
    • /
    • 2000
  • This paper presents a novel neural based controller which controls the water level of the nuclear power plant steam generator. The controller consists of a model reference feedback linearization controller and a PI controller for stabilizing the feedback linearization controller. The feedback linearization controller consists of a neural network model and an inversing module which uses the neural network model for computing the control input to the steam generator. We chose Piecewise Linearly Trained Network(PLTN) and Recurrent Neural Netwrok(RNN) for an approximator of the plant and used these approximators in calculating the input from the feedback linearization controller. Combining the above two controllers gives a result of better performance than the case which uses only a PI controller Each control result of PLTN and RNN is given.

  • PDF

Estimating a Consolidation Behavior of Clay Using Artificial Neural Network (인공신경망을 이용한 압밀거동 예측)

  • Park, Hyung-Gyu;Kang, Myung-Chan;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.673-680
    • /
    • 2000
  • Artificial neural networks are efficient computing techniques that are widely used to solve complex problems in many fields. In this study, a back-propagation neural network model for estimating a consolidation behavior of clay from soil parameter, site investigation data and the first settlement curve is proposed. The training and testing of the network were based on a database of 63 settlement curve from two different sites. Five different network models were used to study the ability of the neural network to predict the desired output to increasing degree of accuracy. The study showed that the neural network model predicted a consolidation behavior of clay reasonably well.

  • PDF

Predicting the shear strength of reinforced concrete beams using Artificial Neural Networks

  • Asteris, Panagiotis G.;Armaghani, Danial J.;Hatzigeorgiou, George D.;Karayannis, Chris G.;Pilakoutas, Kypros
    • Computers and Concrete
    • /
    • v.24 no.5
    • /
    • pp.469-488
    • /
    • 2019
  • In this research study, the artificial neural networks approach is used to estimate the ultimate shear capacity of reinforced concrete beams with transverse reinforcement. More specifically, surrogate approaches, such as artificial neural network models, have been examined for predicting the shear capacity of concrete beams, based on experimental test results available in the pertinent literature. The comparison of the predicted values with the corresponding experimental ones, as well as with available formulas from previous research studies or code provisions highlight the ability of artificial neural networks to evaluate the shear capacity of reinforced concrete beams in a trustworthy and effective manner. Furthermore, for the first time, the (quantitative) values of weights for the proposed neural network model, are provided, so that the proposed model can be readily implemented in a spreadsheet and accessible to everyone interested in the procedure of simulation.

Learning Module Design for Neural Network Processor(ERNIE) (신경회로망칩(ERNIE)을 위한 학습모듈 설계)

  • Jung, Je-Kyo;Kim, Yung-Joo;Dong, Sung-Soo;Lee, Chong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.171-174
    • /
    • 2003
  • In this paper, a Learning module for a reconfigurable neural network processor(ERNIE) was proposed for an On-chip learning. The existing reconfigurable neural network processor(ERNIE) has a much better performance than the software program but it doesn't support On-chip learning function. A learning module which is based on Back Propagation algorithm was designed for a help of this weak point. A pipeline structure let the learning module be able to update the weights rapidly and continuously. It was tested with five types of alphabet font to evaluate learning module. It compared with C programed neural network model on PC in calculation speed and correctness of recognition. As a result of this experiment, it can be found that the neural network processor(ERNIE) with learning module decrease the neural network training time efficiently at the same recognition rate compared with software computing based neural network model. This On-chip learning module showed that the reconfigurable neural network processor(ERNIE) could be a evolvable neural network processor which can fine the optimal configuration of network by itself.

  • PDF

Biologically inspired soft computing methods in structural mechanics and engineering

  • Ghaboussi, Jamshid
    • Structural Engineering and Mechanics
    • /
    • v.11 no.5
    • /
    • pp.485-502
    • /
    • 2001
  • Modem soft computing methods, such as neural networks, evolutionary models and fuzzy logic, are mainly inspired by the problem solving strategies the biological systems use in nature. As such, the soft computing methods are fundamentally different from the conventional engineering problem solving methods, which are based on mathematics. In the author's opinion, these fundamental differences are the key to the full understanding of the soft computing methods and in the realization of their full potential in engineering applications. The main theme of this paper is to discuss the fundamental differences between the soft computing methods and the mathematically based conventional methods in engineering problems, and to explore the potential of soft computing methods in new ways of formulating and solving the otherwise intractable engineering problems. Inverse problems are identified as a class of particularly difficult engineering problems, and the special capabilities of the soft computing methods in inverse problems are discussed. Soft computing methods are especially suited for engineering design, which can be considered as a special class of inverse problems. Several examples from the research work of the author and his co-workers are presented and discussed to illustrate the main points raised in this paper.