• Title/Summary/Keyword: Neural Predictor

Search Result 100, Processing Time 0.029 seconds

A Controller Design for the Prediction of Optimal Heating Load (최적 난방부하 예측 제어기 설계)

  • 정기철;양해원
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.6
    • /
    • pp.441-446
    • /
    • 2000
  • This paper presents an approach for the prediction of optimal heating load using a diagonal recurrent neural networks(DRNN) and data base system of outdoor temperature. In the DRNN, a dynamic backpropagation(DBP) with delta-bar-delta teaming method is used to train an optimal heating load identifier. And the data base system is utilized for outdoor temperature prediction. Compared to other kinds of methods, the proposed method gives better prediction performance of heating load. Also a hardware for the controller is developed using a microprocessor. The experimental results show that prediction enhancement for heating load can be achieved with the proposed method regardless of the its inherent nonlinearity and large time constant.

  • PDF

A Study on the Human Sensibility Evaluation Using 10-channel EEG (10채널 뇌파를 이용한 감성 평가에 관한 연구)

  • Kang, Dong-Kee;Kim, Heung-Hwan;Kim, Dong-Jun;Ko, Han-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.184-186
    • /
    • 2001
  • This paper describes a method of human sensibility evaluation for pleasant and unpleasant environments. Conditions of the environment are room temperature and humidity. Changing the conditions, 10-channel EEG signals for 4 subjects are collected. Linear predictor coefficients of the recorded EEGs are extracted as the feature parameter of human sensibility. A neural network-based human sensibility estimation algorithm is developed. The developed algorithm showed good performance in the pleasantness evaluation. The neural network output produced accurate states of pleasantness sensibility. Subject-independent test showed similar results with subject-dependent test.

  • PDF

Design of Generalized Predictive Controller for Chaotic Nonlinear Systems Using Fuzzy Neural Networks

  • Park, Jong-tae;Park, Jin-bae;Park, Yoon-ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.172.4-172
    • /
    • 2001
  • In this paper, the Generalized Predictive Control(GPC) method based on Fuzzy Neural Networks(FNNs) is presented for the control of chaotic nonlinear systems without precise mathematical models. In our method, FNNs is used as the predictor whose parameters are tuned by the error between the actual output of nonlinear chaotic system and that of FNNs model. The parameters of GPC controller are adjusted via the gradient descent method where the difference between the actual output and the reference signal is used as a control error. Finally, computer simulation on the representative continuous-time chaotic system(Duffing system) is presented to demonstrate the effectiveness of our chaos control method.

  • PDF

A Study on Classification of Four Emotions using EEG (뇌파를 이용한 4가지 감정 분류에 관한 연구)

  • 강동기;김동준;김흥환;고한우
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2001.11a
    • /
    • pp.87-90
    • /
    • 2001
  • 본 연구에서는 감성 평가 시스템에 가장 적합한 파라미터를 찾기 위하여 3가지 뇌파 파라미터를 이용하여 감정 분류 실험을 하였다. 뇌파 파라미터는 선형예측기계수(linear predictor coefficients)와 FFT 스펙트럼 및 AR 스펙트럼의 밴드별 상호상관계수(cross-correlation coefficients)를 이용하였으며, 감정은 relaxation, joy, sadness, irritation으로 설정하였다. 뇌파 데이터는 대학의 연극동아리 학생 4명을 대상으로 수집하였으며, 전극 위치는 Fp1, Fp2, F3, F4, T3, T4, P3, P4, O1, O2를 사용하였다. 수집된 뇌파 데이터는 전처리를 거친 후 특징 파라미터를 추출하고 패턴 분류기로 사용된 신경회로망(neural network)에 입력하여 감정 분류를 하였다. 감정 분류실험 결과 선형예측기계수를 이용하는 것이 다른 2가지 보다 좋은 성능을 나타내었다.

  • PDF

A Study on a Human Sensibility Evaluation Technique of EEG using Personality-group Templates (성격 그룹의 템플릿을 이용한 뇌파의 감성평가 기술에 관한 연구)

  • Lee, Sang-Han;Kim, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2801-2803
    • /
    • 2003
  • This paper describes a technique for human sensibility evaluation using personality-group templates of EEG(electroencephalogram). 10-channel EEGs of 5 extroverts and 5 introverts are collected in comfortable seat, uncomfortable seat and relaxed state. After preprocessing of EEG, the linear predictor coefficients are extracted and used as feature parameters. A neural network based sensibility classifier is designed and the output of the neural network is assumed as the sensibility index. Multiple templates of two personality-groups are stored and the most similar template can be selected by the proposed method. The proposed method showed the better performance than our previous results which have used ungrouped templates.

  • PDF

A proposal of neuron computer for tracking motion of objects

  • Zhu, Hanxi;Aoyama, Tomoo;Yoshihara, Ikuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.496-496
    • /
    • 2000
  • We propose a neuron computer for tracking motion of particles in multi-dimensional space. The neuron computer is constructed of neural networks and their connections, which is a simplified model of the brain. The neuron computer is assemblage of neural networks, it includes a control unit, and the actions of the unit are represented by instructions. We designed a neuron computer to recognize and predict motion of particles. The recognition unit is constructed of neuron-array, encoder, and control part. The neuron-array is a model of the retina, and particles crease an image on the array, where the image is binary. The encoder picks one particle from the array, and translates the particle's location to Cartesian coordinates, which is scaled in [0, 1] intervals. Next, the encoder picks another particle, and does same process. The ordering and reduction of complex processes are executed by instructions. The instructions are held in the control part. The prediction unit is constructed of a multi-layer neural network and a feedback loop, where real time learning is executed. The particles' future locations are forecasted by coordinate values. The neuron computer can chase maximum 100 particles that take evasions.

  • PDF

Performance Analysis of Mulitilayer Neural Net Claddifiers Using Simulated Pattern-Generating Processes (모의 패턴생성 프로세스를 이용한 다단신경망분류기의 성능분석)

  • Park, Dong-Seon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.2
    • /
    • pp.456-464
    • /
    • 1997
  • We describe a random prcess model that prvides sets of patterms whth prcisely contrlolled within-class varia-bility and between-class distinctions.We used these pattems in a simulation study wity the back-propagation netwoek to chracterize its perfotmance as we varied the process-controlling parameters,the statistical differences between the processes,and the random noise on the patterns.Our results indicated that grneralized statistical difference between the processes genrating the patterns provided a good predictor of the difficulty of the clssi-fication problem. Also we analyzed the performance of the Bayes classifier whith the maximum-likeihood cri-terion and we compared the performance of the neural network to that of the Bayes classifier.We found that the performance of neural network was intermediate between that of the simulated and theoretical Bayes classifier.

  • PDF

On the prediction of unconfined compressive strength of silty soil stabilized with bottom ash, jute and steel fibers via artificial intelligence

  • Gullu, Hamza;Fedakar, Halil ibrahim
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.441-464
    • /
    • 2017
  • The determination of the mixture parameters of stabilization has become a great concern in geotechnical applications. This paper presents an effort about the application of artificial intelligence (AI) techniques including radial basis neural network (RBNN), multi-layer perceptrons (MLP), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS) in order to predict the unconfined compressive strength (UCS) of silty soil stabilized with bottom ash (BA), jute fiber (JF) and steel fiber (SF) under different freeze-thaw cycles (FTC). The dosages of the stabilizers and number of freeze-thaw cycles were employed as input (predictor) variables and the UCS values as output variable. For understanding the dominant parameter of the predictor variables on the UCS of stabilized soil, a sensitivity analysis has also been performed. The performance measures of root mean square error (RMSE), mean absolute error (MAE) and determination coefficient ($R^2$) were used for the evaluations of the prediction accuracy and applicability of the employed models. The results indicate that the predictions due to all AI techniques employed are significantly correlated with the measured UCS ($p{\leq}0.05$). They also perform better predictions than nonlinear regression (NLR) in terms of the performance measures. It is found from the model performances that RBNN approach within AI techniques yields the highest satisfactory results (RMSE = 55.4 kPa, MAE = 45.1 kPa, and $R^2=0.988$). The sensitivity analysis demonstrates that the JF inclusion within the input predictors is the most effective parameter on the UCS responses, followed by FTC.

Using Artificial Neural Networks for Forecasting Algae Counts in a Surface Water System

  • Coppola, Emery A. Jr.;Jacinto, Adorable B.;Atherholt, Tom;Poulton, Mary;Pasquarello, Linda;Szidarvoszky, Ferenc;Lohbauer, Scott
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Algal blooms in potable water supplies are becoming an increasingly prevalent and serious water quality problem around the world. In addition to precipitating taste and odor problems, blooms damage the environment, and some classes like cyanobacteria (blue-green algae) release toxins that can threaten human health, even causing death. There is a recognized need in the water industry for models that can accurately forecast in real-time algal bloom events for planning and mitigation purposes. In this study, using data for an interconnected system of rivers and reservoirs operated by a New Jersey water utility, various ANN models, including both discrete prediction and classification models, were developed and tested for forecasting counts of three different algal classes for one-week and two-weeks ahead periods. Predictor model inputs included physical, meteorological, chemical, and biological variables, and two different temporal schemes for processing inputs relative to the prediction event were used. Despite relatively limited historical data, the discrete prediction ANN models generally performed well during validation, achieving relatively high correlation coefficients, and often predicting the formation and dissipation of high algae count periods. The ANN classification models also performed well, with average classification percentages averaging 94 percent accuracy. Despite relatively limited data events, this study demonstrates that with adequate data collection, both in terms of the number of historical events and availability of important predictor variables, ANNs can provide accurate real-time forecasts of algal population counts, as well as foster increased understanding of important cause and effect relationships, which can be used to both improve monitoring programs and forecasting efforts.

A Study on Development ATCS of Transfer Crane using Neural Network Predictive Control (신경회로망 예측제어에 의한 Transfer Crane의 ATCS개발에 관한 연구)

  • Sohn, Dong-Seop;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.26 no.5
    • /
    • pp.537-542
    • /
    • 2002
  • Recently, an automatic crane control system is required with high speed and rapid transportation. Therefore, when container is transferred from th intial coordinate to the finial coordinate, the container paths should be built in terms of the least time and no swing. So in this paper, we calculated the anti-collision path for avoiding collision in its movement to the finial coordinate. And we constructed the neural network predictive PID (NNPPID) controller to control the precise navigation. The proposed predictive control system is composed of the neural network predictor, PID controller, neural network self-tuner which yields parameters of PID. Analyzed crane system through simulation, and proved excellency of control performance than other conventional controllers.