• 제목/요약/키워드: Neural Pathways

검색결과 68건 처리시간 0.029초

Alkylglyceronephosphate Synthase (AGPS) Alters Lipid Signaling Pathways and Supports Chemotherapy Resistance of Glioma and Hepatic Carcinoma Cell Lines

  • Zhu, Yu;Liu, Xing-Jun;Yang, Ping;Zhao, Meng;Lv, Li-Xia;Zhang, Guo-Dong;Wang, Qin;Zhang, Ling
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권7호
    • /
    • pp.3219-3226
    • /
    • 2014
  • Chemotherapy continues to be a mainstay of cancer treatment, although drug resistance is a major obstacle. Lipid metabolism plays a critical role in cancer pathology, with elevated ether lipid levels. Recently, alkylglyceronephosphate synthase (AGPS), an enzyme that catalyzes the critical step in ether lipid synthesis, was shown to be up-regulated in multiple types of cancer cells and primary tumors. Here, we demonstrated that silencing of AGPS in chemotherapy resistance glioma U87MG/DDP and hepatic carcinoma HepG2/ADM cell lines resulted in reduced cell proliferation, increased drug sensitivity, cell cycle arrest and cell apoptosis through reducing the intracellular concentration of lysophosphatidic acid (LPA), lysophosphatidic acid-ether (LPAe) and prostaglandin E2 (PGE2), resulting in reduction of LPA receptor and EP receptors mediated PI3K/AKT signaling pathways and the expression of several multi-drug resistance genes, like MDR1, MRP1 and ABCG2. ${\beta}$-catenin, caspase-3/8, Bcl-2 and survivin were also found to be involved. In summary, our studies indicate that AGPS plays a role in cancer chemotherapy resistance by mediating signaling lipid metabolism in cancer cells.

Stem cell maintenance by manipulating signaling pathways: past, current and future

  • Chen, Xi;Ye, Shoudong;Ying, Qi-Long
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.668-676
    • /
    • 2015
  • Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways.

Phytochemicals That Act on Synaptic Plasticity as Potential Prophylaxis against Stress-Induced Depressive Disorder

  • Soojung, Yoon;Hamid, Iqbal;Sun Mi, Kim;Mirim, Jin
    • Biomolecules & Therapeutics
    • /
    • 제31권2호
    • /
    • pp.148-160
    • /
    • 2023
  • Depression is a neuropsychiatric disorder associated with persistent stress and disruption of neuronal function. Persistent stress causes neuronal atrophy, including loss of synapses and reduced size of the hippocampus and prefrontal cortex. These alterations are associated with neural dysfunction, including mood disturbances, cognitive impairment, and behavioral changes. Synaptic plasticity is the fundamental function of neural networks in response to various stimuli and acts by reorganizing neuronal structure, function, and connections from the molecular to the behavioral level. In this review, we describe the alterations in synaptic plasticity as underlying pathological mechanisms for depression in animal models and humans. We further elaborate on the significance of phytochemicals as bioactive agents that can positively modulate stress-induced, aberrant synaptic activity. Bioactive agents, including flavonoids, terpenes, saponins, and lignans, have been reported to upregulate brain-derived neurotrophic factor expression and release, suppress neuronal loss, and activate the relevant signaling pathways, including TrkB, ERK, Akt, and mTOR pathways, resulting in increased spine maturation and synaptic numbers in the neuronal cells and in the brains of stressed animals. In clinical trials, phytochemical usage is regarded as safe and well-tolerated for suppressing stress-related parameters in patients with depression. Thus, intake of phytochemicals with safe and active effects on synaptic plasticity may be a strategy for preventing neuronal damage and alleviating depression in a stressful life.

Epigenetic Regulation of Axon Regeneration after Neural Injury

  • Shin, Jung Eun;Cho, Yongcheol
    • Molecules and Cells
    • /
    • 제40권1호
    • /
    • pp.10-16
    • /
    • 2017
  • When peripheral axons are damaged, neuronal injury signaling pathways induce transcriptional changes that support axon regeneration and consequent functional recovery. The recent development of bioinformatics techniques has allowed for the identification of many of the regeneration-associated genes that are regulated by neural injury, yet it remains unclear how global changes in transcriptome are coordinated. In this article, we review recent studies on the epigenetic mechanisms orchestrating changes in gene expression in response to nerve injury. We highlight the importance of epigenetic mechanisms in discriminating efficient axon regeneration in the peripheral nervous system and very limited axon regrowth in the central nervous system and discuss the therapeutic potential of targeting epigenetic regulators to improve neural recovery.

Forskolin Effect on the Lineage Specification of Trunk Neural Crest Cells in vitro

  • Jin, Eun-Jung
    • Animal cells and systems
    • /
    • 제6권1호
    • /
    • pp.69-74
    • /
    • 2002
  • Recent evidence has suggested that trunk neural crest cell generally assumed to have equivalent differentiation potentials, demonstrate differentiation bias along the anterior/posterior axis. In amphibian and fish, neural crest cells give rise to three chromatophore types, melanophores, xantho-phores, and iridophores. Each pigment cell type has distinct characteristics but there is speculation about the cellular plasticity that exists among them. Neural crest cells migrate along specific routes, ventromedially and dorsolaterally. Neural crest cells that travel dorsolaterally are the first cells to begin migration in the axolotl and are the major contributors to the visible pigment pattern. Many factors and mechanisms that are responsible for guiding migratory neural crest cells along potential pathways or determining their fate remain unknown. A single lineage of the crest, which becomes restricted to one of the three pigment cell types, gives us the opportunity to examine the existence of neural crest stem cell populations and cellular plasticity. Study presented here showed results from recent in vitro studies designed to identify parameters influencing differentiation events of individual neural crest-derived pigment cell lineages. Melanophore production from neural crest explants originating from different levels along the anterior/posterior axis of wild type-axolotl embryos were compared and demonstrate that the differentiation of melanophores is enhanced in subpopulation of neural crest treated with forskolin. Forskolin (an adenylate cyclase activator) increases intracellular CAMP concentration and eventually activates the protein kinase-A signaling pathway. Melanophore number, melanin content, and tyrosinase activity in explants taken from the anterior-most region of the crest increased significantly in response to forskolin treatment. This study suggests implications of region specific influences and developmental regulation in the development of pigment pattern.

체성감각 유발 전위에서 montage에 대한 개념 (The Concepts of Montage in Somatosensory Evoked Potentials)

  • 차재관;김승현
    • Annals of Clinical Neurophysiology
    • /
    • 제1권2호
    • /
    • pp.160-167
    • /
    • 1999
  • Although somatosensory evoked potentials(SSEPs) have been utilized as the useful diagnostic tools in evaluating the wide variety of pathological conditions, such as focal lesions affecting the somatosensory pathways, demyelinating diseases, and detecting the clinically occult abnormality, their neural generators is still considerably uncertain. To appreciate the basis for uncertainties about the origins of SSEPs, consider criteria that must be met to establish a causal relationship between activity in a neural structure and a spine/ scalp-recorded potential. Electrode locations and channel derivations for SSEPs recordings are based on two principles:(1) the waveforms are best recorded from electrode sites on the body surface closest to the presumed generator sources along the somatosensory pathways, and(2) studies of the potential-field distribution of each waveform of interest dictate the best techniques to be used. In this article, authors will describe followings focused on ;(1) the concepts of near field potentials(NFPs) and far field potentials(FFPs) - the voltage of NFPs is highly dependent upon recording electrode position, FFPs are unlike NFPs in that they are widely distributed, their latencies and amplitudes are independent of recording electrode.(2) appropriate montage settings to detect the significant potentials in the median nerve and posterior tibial nerve SSEPs(3) neural generators of various potentials(P9, N13, P14, N18, N20, P37) and their clinical significance in interpretating the results of SSEPs. Especially, Characteristics of N18(longduration, small superimposed inflection) suggested that N18 is a complex wave with multiple generators including brainstem structures and thalamic nuclei. And N18 might be used as the parameter of braindeath. Precise understanding on these facts provide an adequate basis utilizing SSEPs for numerous clinical purposes.

  • PDF

스트레스와 면역기능 (Stress and Immune Function)

  • 고경봉
    • 정신신체의학
    • /
    • 제4권1호
    • /
    • pp.146-154
    • /
    • 1996
  • 스트레스와 면역기능 간의 관계는 중추신경계, 신경내분비계 및 면역계 간의 의사소통 즉 상호작용에 의해 이루어지고 있다. 중추신경계와 면역계가 상호작용하는 주요 경로는 임파조직의 신경계 wiring system과 신경내분비계다. 면역계는 neuropeptide를 생성하고 이것은 면역반응을 조절한다. 정신사회적 인자와 면역기능 간의 중개자로는 뇌하수체에서 방출되는 peptide, hormone 및 자율신경계 물질이 있다. 시상하부는 내분비계, 신경계 및 면역계를 통합하는 역활을 한다. 특히 시상하부의 paraventricular nucleus가 이 일에 중추적인 역할을 담당한다. 한편 내분비계는 면역계에 의해서 휘이드백을 받는다. 뇌하수체가 면역계를 조절하는 주요 경로로는 시상하부-뇌하수체-부신-흉선축, 시상하부-뇌하수체-성선-흉선축, 송과선-시상하부-뇌하수체축 등이 시사되고 있다. 스트레스와 면역계 간에는 양 방향의 경로가 있는 것으로 가정된다. 즉 스트레스가 면역계에 영향을 미칠 뿐만 아니라 면역계가 정신사회적 기능에 영향을 미칠 수 있다. 따라서 스트레스와 면역기능 간의 관계를 규명하기 위해서는 면역계, 내분비계, 자율신경계 및 뇌활동을 동시에 측정, 비교하여 이들을 통합할 필요가 있다.

  • PDF

Epithelial-Mesenchymal Transition-Inducing Factors Involved in the Progression of Lung Cancers

  • Nam, Min-Woo;Kim, Cho-Won;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • 제30권3호
    • /
    • pp.213-220
    • /
    • 2022
  • Although there have been advances in cancer therapy and surgical improvement, lung cancer has the lowest survival rate (19%) at all stages. This is because most patients are diagnosed with concurrent metastasis, which occurs due to numerous related reasons. Especially, lung cancer is one of the most common and malignant cancers in the world. Although there are advanced therapeutic strategies, lung cancer remains one of the main causes of cancer death. Recent work has proposed that epithelial-mesenchymal transition (EMT) is the main cause of metastasis in most cases of human cancers including lung cancer. EMT involves the conversion of epithelial cells, wherein the cells lose their epithelial abilities and become mesenchymal cells involved in embryonic development, such as gastrulation and neural crest formation. In addition, recent research has indicated that EMT contributes to altering the cancer cells into cancer stem cells (CSCs). Although EMT is important in the developmental stages, this process also activates lung cancer progression, including complicated and diverse signaling pathways. Despite the numerous investigations on signaling pathways involved in the progression of lung cancer, this malignancy is considered critical for treatment. EMT in lung cancer involves many transcription factors and inducers, for example, Snail, TWIST, and ZEB are the master regulators of EMT. EMT-related factors and signaling pathways are involved in the progression of lung cancer, proposing new approaches to lung cancer therapy. In the current review, we highlight the signaling pathways implicated in lung cancer and elucidate the correlation of these pathways, indicating new insights to treat lung cancer and other malignancies.

흰쥐 시상하부에서 신호전달계의 활성화에 의한 단백질 인산화의 변화 (Activation of Signal Transduction Pathways Changes Protein Phosphorylation Patterns in the Rat Hvpothalamus)

  • Lee, Byung-Ju;Sun
    • 한국동물학회지
    • /
    • 제37권1호
    • /
    • pp.130-136
    • /
    • 1994
  • Although alteration in protein phosphorylation by specific protein kinases is of importance in transducing cellular signals in a variety of neural/endocrine systems, little is known about protein phosphorylation in the hvpothalamus. The present study aims to explore whether activation of the second messenger-dependent protein kinases affects phosphorylation of specific proteins using a cell free phosphorylation system followed by SDS-polvacrylamide gel electrophoresis. Cytoplasmic fractions derived from hvpothalami of immature rats were used as substrates and several activators and/or inhibitors of CAMP-, phosphatidylinositol- and Ca2+-calmodulin-dependent protein kinases were assessed. Many endogenous proteins were extensively phosphorylated and depending on the signal transduction pathways, phosphorvlation profiles were markedly different. The present data indicate that extracellular signals may affect cellular events through protein phosphorylation by second messengers-protein kinases in the rat hypothalamus.

  • PDF