• Title/Summary/Keyword: Neural Networks model

Search Result 1,871, Processing Time 0.031 seconds

Production Volume Forecating of each Manufactured Goods by Neural Networks (신경회로망에 의한 제품별 생산량 예측에 관한 연구)

  • Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.298-300
    • /
    • 2001
  • This paper presents a forecasting method for production volume of each model manufactured goods by using Back-Propagation technique of Neural Networks. As the learning constant and the momentum constant are respectively 0.65 and 0.94, the learning number is the least, and the forecating accuracy is the highest. When the learning process is more than 1,000 times, the accurate forecating was possible regardless of kind of product.

  • PDF

Hydrologic Modeling Approach using Time-Lag Recurrent Neural Networks Model (시간지체 순환신경망모형을 이용한 수문학적 모형화기법)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1439-1442
    • /
    • 2010
  • Time-lag recurrent neural networks model (Time-Lag RNNM) is used to estimate daily pan evaporation (PE) using limited climatic variables such as max temperature ($T_{max}$), min temperature ($T_{min}$), mean wind speed ($W_{mean}$) and mean relative humidity ($RH_{mean}$). And, for the performances of Time-Lag RNNM, it is composed of training and test performances, respectively. The training and test performances are carried out using daily time series data, respectively. From this research, we evaluate the impact of Time-Lag RNNM for the modeling of the nonlinear time series data. We should, thus, construct the credible data of the daily PE using Time-Lag RNNM, and can suggest the methodology for the irrigation and drainage networks system. Furthermore, this research represents that the strong nonlinear relationship such as pan evaporation modeling can be generalized using Time-Lag RNNM.

  • PDF

A neural-based predictive model of the compressive strength of waste LCD glass concrete

  • Kao, Chih-Han;Wang, Chien-Chih;Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.19 no.5
    • /
    • pp.457-465
    • /
    • 2017
  • The Taiwanese liquid crystal display (LCD) industry has traditionally produced a huge amount of waste glass that is placed in landfills. Waste glass recycling can reduce the material costs of concrete and promote sustainable environmental protection activities. Concrete is always utilized as structural material; thus, the concrete compressive strength with a variety of mixtures must be studied using predictive models to achieve more precise results. To create an efficient waste LCD glass concrete (WLGC) design proportion, the related studies utilized a multivariable regression analysis to develop a compressive strength waste LCD glass concrete equation. The mix design proportion for waste LCD glass and the compressive strength relationship is complex and nonlinear. This results in a prediction weakness for the multivariable regression model during the initial growing phase of the compressive strength of waste LCD glass concrete. Thus, the R ratio for the predictive multivariable regression model is 0.96. Neural networks (NN) have a superior ability to handle nonlinear relationships between multiple variables by incorporating supervised learning. This study developed a multivariable prediction model for the determination of waste LCD glass concrete compressive strength by analyzing a series of laboratory test results and utilizing a neural network algorithm that was obtained in a related prior study. The current study also trained the prediction model for the compressive strength of waste LCD glass by calculating the effects of several types of factor combinations, such as the different number of input variables and the relevant filter for input variables. These types of factor combinations have been adjusted to enhance the predictive ability based on the training mechanism of the NN and the characteristics of waste LCD glass concrete. The selection priority of the input variable strategy is that evaluating relevance is better than adding dimensions for the NN prediction of the compressive strength of WLGC. The prediction ability of the model is examined using test results from the same data pool. The R ratio was determined to be approximately 0.996. Using the appropriate input variables from neural networks, the model validation results indicated that the model prediction attains greater accuracy than the multivariable regression model during the initial growing phase of compressive strength. Therefore, the neural-based predictive model for compressive strength promotes the application of waste LCD glass concrete.

Application of deep convolutional neural network for short-term precipitation forecasting using weather radar-based images

  • Le, Xuan-Hien;Jung, Sungho;Lee, Giha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.136-136
    • /
    • 2021
  • In this study, a deep convolutional neural network (DCNN) model is proposed for short-term precipitation forecasting using weather radar-based images. The DCNN model is a combination of convolutional neural networks, autoencoder neural networks, and U-net architecture. The weather radar-based image data used here are retrieved from competition for rainfall forecasting in Korea (AI Contest for Rainfall Prediction of Hydroelectric Dam Using Public Data), organized by Dacon under the sponsorship of the Korean Water Resources Association in October 2020. This data is collected from rainy events during the rainy season (April - October) from 2010 to 2017. These images have undergone a preprocessing step to convert from weather radar data to grayscale image data before they are exploited for the competition. Accordingly, each of these gray images covers a spatial dimension of 120×120 pixels and has a corresponding temporal resolution of 10 minutes. Here, each pixel corresponds to a grid of size 4km×4km. The DCNN model is designed in this study to provide 10-minute predictive images in advance. Then, precipitation information can be obtained from these forecast images through empirical conversion formulas. Model performance is assessed by comparing the Score index, which is defined based on the ratio of MAE (mean absolute error) to CSI (critical success index) values. The competition results have demonstrated the impressive performance of the DCNN model, where the Score value is 0.530 compared to the best value from the competition of 0.500, ranking 16th out of 463 participating teams. This study's findings exhibit the potential of applying the DCNN model to short-term rainfall prediction using weather radar-based images. As a result, this model can be applied to other areas with different spatiotemporal resolutions.

  • PDF

A Connectionist Expert System for Fault Diagnosis of Power System (전력계통 사고구간 판정을 위한 Commectionist Expert System)

  • 김광호;박종근
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.4
    • /
    • pp.331-338
    • /
    • 1992
  • The application of Connectionist expert system using neural network to fault diagnosis of power system is presented and compared with rule-based expert system. Also, the merits of Connectionist model using neural network is presented. In this paper, the neural network for fault diagnosis is hierarchically composed by 3 neural network classes. The whole power system is divided into subsystems, the neural networks (Class II) which take charge of each subsystem and the neural network (Class III) which connects subsystems are composed. Every section of power system is classified into one of the typical sections which can be applied with same diagnosis rules, as line-section, bus-section, transformer-section. For each typical section, only one neural network (Class I) is composed. As the proposed model has hierarchical structure, the great reduction of learning structure is achieved. With parallel distributed processing, we show the possibility of on-line fault diagnosis.

  • PDF

Extraction of Protein-Protein Interactions based on Convolutional Neural Network (CNN) (Convolutional Neural Network (CNN) 기반의 단백질 간 상호 작용 추출)

  • Choi, Sung-Pil
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.194-198
    • /
    • 2017
  • In this paper, we propose a revised Deep Convolutional Neural Network (DCNN) model to extract Protein-Protein Interaction (PPIs) from the scientific literature. The proposed method has the merit of improving performance by applying various global features in addition to the simple lexical features used in conventional relation extraction approaches. In the experiments using AIMed, which is the most famous collection used for PPI extraction, the proposed model shows state-of-the art scores (78.0 F-score) revealing the best performance so far in this domain. Also, the paper shows that, without conducting feature engineering using complicated language processing, convolutional neural networks with embedding can achieve superior PPIE performance.

Autonomous Vehicle Tracking Using Two TDNN Neural Networks (뉴럴네트워크를 이용한 무인 전방차량 추적방법)

  • Lee, Hee-Man
    • The Transactions of the Korea Information Processing Society
    • /
    • v.3 no.5
    • /
    • pp.1037-1045
    • /
    • 1996
  • In this paper, the parallel model for stereo camera is employed to find the heralding angle and the distance between a leading vehicle and the following vehicle, BART(Binocular Autonomous Research Team vehicle). Two TDNNs (Time Delay Neural Network) such as S-TDNN and A-TDNN are introduced to control BART. S-TDNN controls the speed of the following vehicle while A-TDNN controls the steering angle of BATR. A human drives BART to collect data which are used for training the said neural networks. The trained networks performed the vehicle tracking function satisfactorily under the same driving conditions performed by the human driver. The neural network approach has good portability which decreases costs and saves development time for the different types of vehicles.

  • PDF

Artificial Neural Networks for Flood Forecasting Using Partial Mutual Information-Based Input Selection

  • Jae Gyeong Lee;Li Li;Kyung Soo Jun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.363-363
    • /
    • 2023
  • Artificial Neural Networks (ANN) is a powerful tool for addressing various practical problems and it has been extensively applied in areas of water resources. In this study, Artificial Neural Networks (ANNs) were developed for flood forecasting at specific locations on the Han River. The Partial Mutual Information (PMI) technique was used to select input variables for ANNs that are neither over-specified nor under-specified while adequately describing the underlying input-output relationships. Historical observations including discharges at the Paldang Dam, flows from tributaries, water levels at the Paldang Bridge, Banpo Bridge, Hangang Bridge, and Junryu gauge station, and time derivatives of the observed water levels were considered as input candidates. Lagged variables from current time t to the previous five hours were assumed to be sufficient in this study. A three-layer neural network with one hidden layer was used and the neural network was optimized by selecting the optimal number of hidden neurons given the selected inputs. Given an ANN architecture, the weights and biases of the network were determined in the model training. The use of PMI-based input variable selection and optimized ANNs for different sites were proven to successfully predict water levels during flood periods.

  • PDF

Modeling of Multimedia Internet Transmission Rate Control Factors Using Neural Networks (멀티미디어 인터넷 전송을 위한 전송률 제어 요소의 신경회로망 모델링)

  • Chong Kil-to;Yoo Sung-Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • As the Internet real-time multimedia applications increases, the bandwidth available to TCP connections is oppressed by the UDP traffic, result in the performance of overall system is extremely deteriorated. Therefore, developing a new transmission protocol is necessary. The TCP-friendly algorithm is an example satisfying this necessity. The TCP-Friendly Rate Control (TFRC) is an UDP-based protocol that controls the transmission rate that is based on the available round trip time (RTT) and the packet loss rate (PLR). In the data transmission processing, transmission rate is determined based on the conditions of the previous transmission period. If the one-step ahead predicted values of the control factors are available, the performance will be improved significantly. This paper proposes a prediction model of transmission rate control factors that will be used in the transmission rate control, which improves the performance of the networks. The model developed through this research is predicting one-step ahead variables of RTT and PLR. A multiplayer perceptron neural network is used as the prediction model and Levenberg-Marquardt algorithm is used for the training. The values of RTT and PLR were collected using TFRC protocol in the real system. The obtained prediction model is validated using new data set and the results show that the obtained model predicts the factors accurately.

Improvement of Vocal Detection Accuracy Using Convolutional Neural Networks

  • You, Shingchern D.;Liu, Chien-Hung;Lin, Jia-Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.729-748
    • /
    • 2021
  • Vocal detection is one of the fundamental steps in musical information retrieval. Typically, the detection process consists of feature extraction and classification steps. Recently, neural networks are shown to outperform traditional classifiers. In this paper, we report our study on how to improve detection accuracy further by carefully choosing the parameters of the deep network model. Through experiments, we conclude that a feature-classifier model is still better than an end-to-end model. The recommended model uses a spectrogram as the input plane and the classifier is an 18-layer convolutional neural network (CNN). With this arrangement, when compared with existing literature, the proposed model improves the accuracy from 91.8% to 94.1% in Jamendo dataset. As the dataset has an accuracy of more than 90%, the improvement of 2.3% is difficult and valuable. If even higher accuracy is required, the ensemble learning may be used. The recommend setting is a majority vote with seven proposed models. Doing so, the accuracy increases by about 1.1% in Jamendo dataset.